

ISB-CGC

Democratizing access to cancer data in the cloud

Contained within this documentation are descriptions of ISB-CGC features along with guides and tips for exploring data sets hosted on the Google Cloud Platform.

[image: _images/overview_image.png]
The ISB-CGC [https://isb-cgc.org] aims to serve the needs of a broad range of cancer researchers ranging from scientists or clinicians who prefer to use an interactive web-based application to access and explore the rich TCGA, TARGET, CCLE, and COSMIC datasets, to computational scientists who want to write their own custom scripts using languages such as R or Python, accessing the data through APIs, and to algorithm developers who wish to spin up thousands of virtual machines to analyze hundreds of terabytes of sequence data.

– the ISB-CGC team

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

About the ISB-CGC Platform

The ISB Cancer Gateway in the Cloud (ISB-CGC) is one of three National Cancer Institute (NCI) Cloud Resources [https://datascience.cancer.gov/data-commons/cloud-resources] tasked with bringing cancer data and computation power together through cloud platforms. It is a collaboration between the Institute for Systems Biology [https://isbscience.org/] (ISB) and General Dynamics Information Technology Inc. [https://www.gdit.com/] (GDIT). Since starting in 2014 as part of NCI’s Cloud Pilot Resource initiative, ISB-CGC has provided access to increasing amounts of cancer data in the cloud.

Exploring Cancer Data

The ISB-CGC Platform enables a wide range of users to bring their analysis tools to the data in the cloud, eliminating the need to download and store large data sets. Built with the Google Cloud Platform, it provides several entry points for exploring and analyzing cancer data:

	The ISB-CGC Web Application allows users to interactively create and explore cohorts of interest. It includes the functionality of the Cancer Data File Browser and the Cohort Builder/Data Explorer as well as other tools.

	The Cancer Data File Browser allows users to explore a comprehensive selection of cancer related data files in Google Cloud Storage Buckets, such as raw sequencing, cancer nucleotide variation, pathology or radiology images.

	The Cohort Builder/Data Explorer is a web interface which builds cohorts based on clinical demographics and molecular filters. Compare patient cohorts with various exploration tools including IGV viewer, image viewers, and analytical visualization.

	The ISB-CGC API gives users the ability to programmatically work with data such as cases, samples, cohorts, files and cloud projects.

	The ISB-CGC BigQuery Table Search is a discovery tool that allows the user to explore and search for ISB-CGC Google BiqQuery tables.

	On the Google Cloud Platform BigQuery Console, ISB-CGC tables can be viewed and queried directly.

	Python and R can interface with the ISB-CGC tables, retrieving and analyzing data.

	Using Google Compute Engines and VMs, workflows can be run to perform data analysis.

Please see the USER GUIDE section to learn more about each of these tools and to see Jupyter and R Notebook [https://github.com/isb-cgc/Community-Notebooks] examples. See the MORE INFORMATION section for tutorials, release notes, Frequently Asked Questions and more.

[image: ../_images/ToolsForISBCGC.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC Data Overview

ISB-CGC provides access to data from several research programs, such as The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET), Cancer Cell Line Encyclopedia (CCLE) and Catalogue of Somatic Mutations in Cancer (COSMIC). The full list is available here.

The majority of the data made available through ISB-CGC originates from NCI Genomic Data Commons [https://gdc.cancer.gov/] (GDC). Users can access GDC data on the cloud through ISB-CGC. Users have access to both raw and processed data from cancer patients.

In general, almost all raw data is controlled-access and is accessible through Google Cloud Storage buckets; only those users with proper authorization can access them. The GDC has established bioinformatics workflows/pipelines executed on the raw data to generate processed data. In this way, users can directly access the processed data without having to run compute-intensive workflows themselves. However, users who wish to run their own workflows/pipelines still have access to the raw data as well.

GDC processed data, however, are generally open-access. ISB-CGC allows users to utilize this processed data in two ways on the platform:

	Google Cloud Storage: All individual processed data files are accessible through GDC Google Cloud Storage buckets; ISB-CGC provides pointers to these files.

	Google BigQuery: Processed data are consolidated by datatype (ex. Clinical, DNA Methylation, RNAseq, Somatic Mutation, etc.) and transformed into ISB-CGC Google BigQuery tables for ease of access and analysis. This novel approach allows our users to quickly analyze information from thousands of patients in our curated BigQuery tables.

[image: ../_images/DataStorageOnISBCGC.png]

Google Cloud Storage

Google Cloud Storage [https://cloud.google.com/storage/] (GCS) is a cloud-based object-store that is used to store many types of (usually binary) data, typically processed by custom software pipelines. The data hosted by GDC is contained within Google Cloud Storage. Metadata stored within ISB-CGC BigQuery tables contains pointers to file locations in this GDC data.

Google BigQuery

Google BigQuery [https://cloud.google.com/bigquery/] (BQ) is a columnar database ideal for storing tabular data. Its query speed is automatically scaled by multiprocessing. Data is accessed using a powerful SQL language interface.

ISB-CGC stores high-level clinical, biospecimen, and molecular data from the main NCI programs in the BigQuery project isb-cgc. It also stores a large amount of metadata about files that are stored in the GDC Google Cloud Storage, as well as genome reference sources (e.g. GENCODE, miRBase, etc.). All of these data sets and tables are completely open access and available to the research community.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Quick-Start Guide

ISB-CGC provides both interactive (through a web application [https://isb-cgc.appspot.com/]) and programmatic access to data hosted by institutes such as the Genomic Data Commons (GDC) of the National Cancer Institute (NCI), and the Wellcome Trust Sanger Institute, leveraging many aspects of the Google Cloud Platform. To get started, you’ll need a Google Cloud Project. Additionally, to access controlled data, you’ll also need dbGaP authorization.

[image: ../_images/GettingStarted.png]

Google Cloud Project Setup and Data Access

A Google Cloud Project (GCP) is required to make use of all of the data, tools, and Google Cloud functionality.

Obtain a Google identity

	Do you or your institution already have a Google identity, such as a Gmail account? If so, you can proceed to the next step.

	If not, it only takes a minute to create a Google identity [https://accounts.google.com/signup/v2/webcreateaccount?dsh=308321458437252901&continue=https%3A%2F%2Faccounts.google.com%2FManageAccount&flowName=GlifWebSignIn&flowEntry=SignUp#FirstName=&LastName=]. You can even link a non-Gmail account (eg. scientist@nih.gov) as a Google identity by this [https://accounts.google.com/signup/v2/webcreateaccount?flowName=GlifWebSignIn&flowEntry=SignUp&nogm=true] method.

Request Google Cloud Credits

	Take advantage of a one-time $300 Google Credit [https://cloud.google.com/free/].

	If you have already used this one-time offer (or there is some other reason you cannot use it), see this information about how to request ISB-CGC Cloud Credits.

Set up a Google Cloud Project

	See Google’s documentation about how to create a Google Cloud Project [https://cloud.google.com/resource-manager/docs/creating-managing-projects].

	Learn about how to add members and roles to a project [https://cloud.google.com/iam/docs/quickstart].

	If you’ll be accessing controlled data, register the GCP project.

	Enable Required Google Cloud APIs [https://cloud.google.com/apis/docs/getting-started#enabling_apis]

Connect to ISB-CGC’s cancer data tables in Google BigQuery

	To obtain access to the ISB-CGC open access project tables in BigQuery, users can link these tables to their GCP project as described here.

	To obtain access to the ISB-CGC controlled access project tables in BigQuery, users can link these tables to their GCP project as described here.

Access open-access data

	All individual processed data files are accessible through GDC Google Cloud Storage buckets; ISB-CGC provides pointers to these files. Examples of how to find these URLs are in this section, on each Program’s documentation page; these SQL queries can also be incorporated into notebooks or workflows.

Access controlled data (with proper authorization)

	To access controlled data (primarily raw data files in the GDC Google Cloud Storage buckets), users must first be authenticated by NIH (via the ISB-CGC web-app). Upon successful authentication, user dbGaP authorization will be verified. These two steps are required before the user’s Google identity is added to the access control list (ACL) for the controlled data. At this time, this access must be renewed every 24 hours.

Getting Started with Analysis

Now you’re ready to perform analysis. ISB-CGC offers web-based interactive interactive analysis, analysis with Google BigQuery and analysis using APIs and VMs. Please see the next section Getting Started with Analysis to learn more.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Getting Started with Analysis

ISB-CGC enables researchers to analyze cloud-based cancer data through a collection of powerful web-based tools and Google Cloud technologies. Learn more about the different analytical methods ISB-CGC users employ on their research projects.

Interactive web-based Cancer Data Analysis & Exploration

Explore and analyze ISB-CGC cancer data through a suite of graphical user interfaces (GUIs) that allow users to select and
filter data from one or more public data sets (such as TCGA, CCLE, and TARGET), combine these with your own uploaded data and analyze using a variety of built-in visualization tools.

	
	Cohort Builder/Data Explorer

	
Create and explore cohorts of interest

	
	ISB-CGC Cohort Builder/Data Explorer Documentation

	ISB-CGC Cohort Builder/Data Explorer [https://isb-cgc.appspot.com/cohorts/new_cohort/]

	
	Interactive Pathology and Radiology Image Viewers

	
View images from cancer patients using integrated image viewers

	
	ISB-CGC Image Viewers Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/OsimisWebViewer.html]

	
	Integrative Genomics Viewer (IGV)

	
Explore and visualize genomic data

	
	ISB-CGC Integrative Genomics Viewer (IGV) Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/IGV-Browser.html]

	
	Cancer Data File Browser

	
Browse and identify files associated with cohorts of interest

	
	ISB-CGC Cancer Data File Browser Documentation

	ISB-CGC Cancer Data File Browser [https://isb-cgc.appspot.com/cohorts/filelist/]

	
	Mitelman Database for Chromosome Aberrations and Gene Fusions in Cancer

	
Explore relationships between chromosomal changes and cancer

	
	ISB-CGC Mitelman Database Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/Mitelman_about.html]

	ISB-CGC Mitelman Database [https://mitelmandatabase.isb-cgc.org/]

Cancer data analysis using Google BigQuery

Processed data are consolidated by data type (ex. Clinical, DNA Methylation, RNAseq, Somatic Mutation, etc.) and transformed
into ISB-CGC Google BigQuery tables for ease of access and analysis. This novel approach allows users to quickly analyze
information from thousands of patients in our curated BigQuery tables.

	
	BigQuery Table Search User Interface

	
Learn more about ISB-CGC hosted BigQuery tables

	
	ISB-CGC BigQuery Table Search Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/BigQueryTableSearchUI.html]

	ISB-CGC BigQuery Table Search [https://isb-cgc.appspot.com/bq_meta_search/]

	
	Google BigQuery Console

	
Use SQL to analyze and query ISB-CGC cancer data stored in Google’s cloud-based data warehouse

	
	ISB-CGC BigQuery Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/BigQuery.html]

	Google BigQuery Documentation [https://cloud.google.com/bigquery/what-is-bigquery]

	Google Cloud BigQuery Console [https://console.cloud.google.com/bigquery]

	
	Notebooks

	
Seamlessly integrate ISB-CGC tables with R and Python to conduct robust analyses

	
	ISB-CGC Notebook Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowTos.html]

	ISB-CGC Statistical Notebook Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/RegulomeExplorerNotebooks.html]

Cancer data analysis using APIs & Google Cloud Virtual Machines

ISB-CGC enables the use of as many workflow technologies as possible through documentation, support, and necessary infrastructure.

	
	ISB-CGC APIs

	
Programmatically access data and user-generated cancer patient cohort information

	
	ISB-CGC API Documentation [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/progAPI-v4/Programmatic-Demo.html]

	ISB-CGC API [https://api-dot-isb-cgc.appspot.com/v4/swagger/]

	
	Connecting to GA4GH and Cloud Life Sciences APIs:

	
Easily connect to APIs from ISB-CGC

	
	How to find a tool using GA4GH TRS Notebook [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_find_a_tool_using_GA4GH_TRS.ipynb]

	How to use a GA4GH tool using WES Notebook [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_a_GA4GH_tool_using_WES.ipynb]

	Google API Documentation [https://cloud.google.com/life-sciences/docs/apis]

	
	Running workflows on ISB-CGC

	
Execute open-source and custom pipelines/algorithms on scalable virtual machines

	
	ISB-CGC Workflow Documentation

	We recommend tools such as the Google Cloud SDK [https://cloud.google.com/sdk/], Google Compute Engine [https://cloud.google.com/compute/], Virtual Machines [https://en.wikipedia.org/wiki/Virtual_machine] and Docker [https://www.docker.com/why-docker#/VM] to assist your analyses.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

How to Request Cloud Credits

We are offering free Google Cloud credits for researchers to try out our platform! To get trial
funding in an ISB-CGC funded Google Cloud Platform (GCP) project, please send your request to
request-gcp@isb-cgc.org.
(Note that if you already have a GCP project, and are not requesting funds as part of our
community evaluation phase, you do not need a separate GCP project in order to work with ISB-CGC
hosted data or tools.)

In your request, please describe your research goals in some detail, including information such
as the type of data that you plan to use (whether it is your own data or data already hosted
by the ISB-CGC), the algorithms and/or methods you plan to apply, and an estimate of the storage
and computing costs you expect to incur. Please let us know if you have students or collaborators
who will also be accessing the same cloud project. Teams working on a single project should all
use the same cloud project. If your group is large, we will take this into consideration in
determining the funding we can supply.

If you have previous experience using the Google Cloud Platform, that would be
useful for us to know – including which specific components (eg Compute Engine, BigQuery,
Cloud Datalab, etc).

All reasonable requests will receive an initial allocation of $300 towards storage and compute costs.
We expect that this amount of funding will be more than enough for you to become familiar with the platform.
If you expect that you will need additional funding to complete your planned research, this initial amount
may be used to perform prototype analyses and to better estimate your total costs. At that time, you may
request additional funding.

Please be aware that we will be monitoring your cloud resource usage on a daily basis and will alert you as
you begin to approach your funding limit. If you exceed your allocation limit and we are not able to contact
you by email for several days, we may need to take action to shut your project down which could cause you to
lose work and data.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Best Practices

Don’t Download the Data

The ISB-CGC platform is one of NCI’s Cancer Cloud Resources [https://datascience.cancer.gov/data-commons/cloud-resources] and our mission is to host cancer data (such as TCGA and TARGET data) in the cloud so that researchers around the world may work with data without needing to download and store the data at their own local institutions.

Remember those times when you had to wait weeks to download the data - you don’t need to do that any more! The data is already on the cloud, so you can collaborate with other researchers much more easily.
Be mindful that if you download data, you’ll incur egress charges.
Google egress charges information [https://cloud.google.com/compute/pricing#internet_egress]

Computing on the Cloud

Most of the same linux commands, scripts, pipelines/workflows, genomics software packages and docker containers that you run on your local machine can be executed on virtual machines on Google Cloud.

a.) The basics and best practices on how to launch virtual machines (VMs) are described here [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/gcp-info/gcp-info2/LaunchVM.html] in our documentation. NOTE: When launching VMs, please maintain the default firewall settings.

b.) Compute Engine instances can run the public images for Linux and Windows Server that Google provides as well as private custom images that you can create [https://cloud.google.com/compute/docs/images/create-delete-deprecate-private-images] or import from your existing systems [https://cloud.google.com/compute/docs/images/importing-virtual-disks].

Be careful as you spin up a machine, as larger machines cost you more. If you are not using a machine, shut it down. You can always restart it easily when you need it.

Example use-case: You would like to run Windows-only genomics software package on the TCGA data. You can create a Windows based VM instance.

c.) More details on how to deploy docker containers on VMs are described here in Google’s documentation: deploying containers [https://cloud.google.com/compute/docs/containers/deploying-containers]

d.) A good way to estimate costs for running a workflow/pipeline on large data sets is to test them first on a small subset of data.

e.) There are different VM types depending on the sort of jobs you wish to execute. By default, when you create a VM instance, it remains active until you either stop it or delete it. The costs associated with VM instances are detailed here: compute pricing [https://cloud.google.com/compute/pricing]

f.) If you plan on running many short compute-intensive jobs (for example indexing and sorting thousands of large bam files), you can execute your jobs on preemptible virtual machines. They are 80% cheaper than regular instances. preemptible vms [https://cloud.google.com/preemptible-vms/]

	Example use-cases:

	
	Using preemptible VMs, researchers were able to quantify transcript levels on over 11K TGCA RNAseq samples for a total cost of $1,065.49.

Tatlow PJ, Piccolo SR. A cloud-based workflow to quantify transcript-expression levels in public cancer compendia [https://www.nature.com/articles/srep39259]. Scientific Reports 6, 39259

	Also Broad’s popular variant caller pipeline, GATK, was designed to be able to run on preemptible VMs.

Storage on the Cloud

The Google Cloud Platform offers a number of different storage options for your virtual machine instances: disks [https://cloud.google.com/compute/docs/disks/]

	a.) Block Storage: [https://cloud.google.com/compute/docs/disks/#pdspecs]

	
	By default, each virtual machine instance has a single boot persistent disk that contains the operating system. The default size is 10GB but can be adjusted up to 64TB in size. (Be careful! High costs here, spend wisely!)

	Persistent disks are restricted to the zone where your instance is located.

	Use persistent disks if you are running analyses that require low latency and high-throughput.

b.) Object Storage: [https://cloud.google.com/compute/docs/disks/#gcsbuckets] Google Cloud Storage (GCS) buckets are the most flexible and economical storage option.

	Unlike persistent disks, Cloud Storage buckets are not restricted to the zone where your instance is located.

	Additionally, you can read and write data to a bucket from multiple instances simultaneously.

	You can mount a GCS bucket to your VM instance when latency is not a priority or when you need to share data easily between multiple instances or zones.

An example use-case: You want to slice thousands of bam files and save the resulting slices to share with a collaborator who has instances in another zone to use for downstream statistical analyses.
- You can save objects to GCS buckets including images, videos, blobs and unstructured data.

A comparison table detailing the current pricing of Google’s storage options can be found here: storage features [https://cloud.google.com/storage/features/]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Benefits of Using The Cloud

Working in the cloud is exceptionally scalable and versatile; you only use as much as you need, whether that’s in terms of storage space or processing cores. Cloud-based data is easily read by massively parallel processes, expediting results. When you’re done, resources disappear! You don’t have idle resources sitting around collecting dust.

Don’t be intimidated by the cloud! Scale your analyses using the data on ISB-CGC. If you’ve conducted bioinformatics before using the command line or SQL, this will be just as easy (if not easier) and we are also here to help. Email feedback@isb-cgc.org or visit our Community Notebooks page for guides and tutorials.

Most bioinformaticians today are likely accustomed to using the high performance compute (HPC) resources provided by their institution to conduct high-throughput bioinformatics analyses. Here’s a breakdown on how the Google Cloud Platform compares to your institution’s HPC resources.

	
	Your University’s HPC Resource

	Google Cloud Platform

	Operating
Systems

	Linux, Windows

	Virtual machines can run Linux and
Windows

	Compute

	Virtual machines not determined by
you

	You can sign up with you own virtual
machines*

	Storage

	Block Storage

	Small storage is available in
your home directory (usually
around 1TB)

	Some Scratch storage that is often
deleted after a certain amount of
time

	Storage is usually a shared
resource

	Block Storage & Object Storage

	Each virtual machine instance has a
single boot persistent disk with a
default size of 10GB that can be
adjusted up to 64TB*

	For storage that needs IO, consider
persistent disks

	Google Cloud Storage (GCS) buckets are
the most flexible and economical
storage option

	You can save objects to GCS buckets
including images, videos, blobs, and
unstructured data

	Pricing

	Depends on the institution:

	Institution provides basic HPC
resources for researchers free of
charge

	PIs requiring larger-scale
resources must purchase clusters
and storage space

	Pay as you go

	You pay for the compute resources and
storage that you use*

	Do you
have to
wait?

	Yes

	Resources are shared among users

	Scheduler systems used to schedule
jobs based on resource
availability

	No

	Once you’ve set up a Google Cloud
Platform account, you can spin up a
virtual machine and begin computing
quickly

	Is
machine
powerful
enough?

	Yes and no, depends on what you’re
trying to do; often it’s a no

	Compute resources and storage are
unlimited, but you have to pay for it*

	Accessing
Cancer
Genomics
Data

	Typically not stored on the HPC; you
have to download to your local
machine

	Data is stored on the cloud

	How to
connect

	Log in using Secure Shell
protocol (SSH)

	Log in using Secure Shell
protocol (SSH)

*Be careful of costs

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Programs and Data Sets

The National Cancer Institute (NCI) Genomic Data Commons [https://gdc.cancer.gov/] (GDC) provides the cancer research community with a unified data repository that enables data sharing across cancer genomic studies (known as Programs) in support of precision medicine. For more information about the GDC, see the GDC Overview.

Between ISB-CGC and the NCI GDC, there are many cancer data sets available on the Google Cloud Platform. ISB-CGC hosts some carefully curated, high-level clinical, biospecimen and molecular data sets and tables in Google BigQuery as well as radiology and pathology images in Google Cloud Storage. The GDC hosts several more data sets that include low-level sequencing data.

The ISB-CGC started with The Cancer Genome Atlas (TCGA) data sets but has expanded to include other data sets from programs such as Therapeutically Applicable Research To Generate Effective Treatments (TARGET). Along with the NCI GDC data sets, ISB-CGC hosts data sets from programs such as Catalogue Of Somatic Mutations In Cancer (COSMIC) from the Wellcome Trust Sanger Institute [http://www.sanger.ac.uk/]. We are always interested in adding new data sets, so if you have any suggestions or requests for additional data, please let us know (feedback@isb-cgc.org).

Clinical, Biospecimen and Processed -Omics Data Sets

From Genomic Data Commons

[image: ../_images/omicsData.png]

Clinical, biospecimen and processed -omics data (such as RNASeq, etc.) are available in the GDC Cloud Storage buckets, in ISB-CGC BigQuery tables and through ISB-CGC web tools. The table below lists each Program and where (through ISB-CGC) that you can find its data.

	Within the detailed documentation on each Program (click on the Program name), there is an example of how to use the metadata stored in ISB-CGC BigQuery tables to locate the Program’s files on the GDC Google Cloud Storage buckets.

	To learn more about using this data with ISB-CGC web tools, go to the ISB-CGC Web Interface section of this document.

	To locate these tables in the ISB-CGC BigQuery project, use the ISB-CGC BigQuery Table Search.

	Program

	GDC Google Cloud Storage

	ISB-CGC BigQuery Tables

	ISB-CGC Cohort Builder

	BEATAML

	[image: checkmark]

	[image: checkmark] *

	

	CCLE

	[image: checkmark]

	[image: checkmark]

	[image: checkmark]

	CGCI

	[image: checkmark]

	
	

	CPTAC

	[image: checkmark]

	
	

	CTSP

	[image: checkmark]

	
	

	FM

	[image: checkmark]

	
	

	GENIE

	[image: checkmark]

	
	

	HCMI

	[image: checkmark]

	[image: checkmark] *

	

	MMRF

	[image: checkmark]

	
	

	NCICCR

	[image: checkmark]

	
	

	OHSU

	[image: checkmark]

	
	

	ORGANOID

	[image: checkmark]

	[image: checkmark] *

	

	TARGET

	[image: checkmark]

	[image: checkmark]

	[image: checkmark]

	TCGA

	[image: checkmark]

	[image: checkmark]

	[image: checkmark]

	TCGA Pathology and Radiology images

	[image: checkmark]

	[image: checkmark]

	[image: checkmark]

	VAREPOP

	[image: checkmark]

	
	

	WCDT

	[image: checkmark]

	
	

*RNA-seq data available

From Other Sources

	Program

	GDC Google Cloud Storage

	ISB-CGC BigQuery Tables

	ISB-CGC Cohort Builder

	COSMIC

	No, the COSMIC database is maintained by the Wellcome Sanger Institute, UK

	Yes, COSMIC data is in BigQuery for registered users. Learn more about how to gain access to the COSMIC data here

	

	Pan-Cancer Atlas

	
	[image: checkmark]

	

Reference Data Sets

ISB-CGC hosts reference tables in BigQuery with information that describes or annotates human or other genomes, or is necessary to work with data generated by specific platforms.

File Metadata Data Sets

ISB-CGC hosts metadata tables in BigQuery with information that points to the raw and processed cancer data in the NCI GDC Google Cloud Storage buckets.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

NCI GDC Overview

The NCI hosts a variety of data from cancer genomic studies in the Genomic Data Commons [https://gdc.cancer.gov/] (GDC) providing the cancer research community a unified data repository enabling data sharing to support precision medicine.

The GDC Data Portal [https://portal.gdc.cancer.gov/] allows users to search for and download data directly via your web browser or using the GDC Data Transfer Tool. There are two sets of data available in the GDC: legacy data and harmonized data. The legacy data is from previous data coordinating centers, such as TCGA-DCC and CGHub, that the GDC inherited. The current data available in the GDC is harmonized data from the coordination centers that were realigned to GRCh38/hg38 and reprocessed by GDC along with new data sets.

If you have used the GDC portal to create cohorts or file lists, you can follow these [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/GDCTutorials/FromGDCtoISBCGC.html] tutorials to bring that information into ISB-CGC for use.

A note about legacy and harmonized data sets

Programs like TCGA that predate the Genomic Data Commons will have both legacy data sets (data as originally generated by the program) and harmonized data sets created by the Genomic Data Commons. While these data sets do have much in common, as part of the GDC harmonization process several changes can occur including removal or addition of cases and samples or changes in terminology. One of the goals of the ISB-CGC is to stay current with changes introduced by GDC and therefore you may find differences between legacy data and harmonized data.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

BEATAML1.0 Data Set

About the BEATAML1.0

The BEATAML1.0 [https://www.lls.org/beat-aml] data is from several studies focused on acute myeloid leukemia (AML) and the effect of different therapies such as the drug Crenolanib. The implementation of targeted therapies for AML was challenging due to two reasons. The first was due to the intricate mutational patterns within and across patients and the second, was a shortage of pharmacologic agents for most mutational events.

The Crenolanib drug was studied because it is a potent type I pan-FLT3 (GeneID:2322) inhibitor, and FLT3 mutations are associated with poor prognosis and commonly detected in AML patients.

About the BEATAML1.0 Data

The BEATAML1.0 consists of over 220 files with 56 phenotyped subjects, 672 tumor specimens collected from 562 cases, and over 36 TB of data. The data is made up of mainly BAM, VCF, TXT, and TSV files. The majority of the data is whole-exome sequencing along with RNA sequencing. The Project ID in the GDC is BEATAML1.0-CRENOLANIB [https://portal.gdc.cancer.gov/projects/BEATAML1.0-CRENOLANIB] and BEATAML1.0-COHORT [https://portal.gdc.cancer.gov/projects/BEATAML1.0-COHORT].

For more information on the BEATAML1.0 data, please refer to these sites:

	BEATAML1.0-CRENOLANIB dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001628.v1.p1]

	BEATAML1.0-COHORT dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001657.v1.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22BEATAML1.0%22%5D%7D%7D%5D%7D&searchTableTab=files]

Accessing the BEATAML1.0 Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the BEATAML1.0 files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'BEATAML1.0'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

CCLE Data Set

About the Cancer Cell Line Encyclopedia

The Cancer Cell Line Encyclopedia [https://depmap.org/portal/ccle/] (CCLE) project is an effort to conduct a detailed genetic characterization of a large panel of human cancer cell lines. The CCLE provides public access analysis and visualization of DNA copy number, mRNA expression, mutation data and more, for 1000 cancer cell lines.

About the Cancer Cell Line Encyclopedia Data

The CCLE aligned reads (BAM files) are currently available in an open-access Cloud Storage bucket which you can browse here [https://console.cloud.google.com/storage/browser/gdc-ccle-open/].

A set of BigQuery tables containing CCLE data are available in the isb-cgc.CCLE_bioclin_v0 data set [https://console.cloud.google.com/bigquery?p=isb-cgc&d=CCLE_bioclin_v0&page=dataset]. This data has been updated and reformatted from the original data set isb-cgc.ccle_201602_alpha data set [https://console.cloud.google.com/bigquery?p=isb-cgc&d=ccle_201602_alpha&page=dataset] to look more like the newer TCGA and TARGET datasets, to optimize usage in the cancer research community.

Accessing the Cancer Cell Line Encyclopedia Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the CCLE files. Here is an example:

SELECT legacy.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_legacy` as legacy, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'CCLE'
AND legacy.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

CGCI Data Set

About the Cancer Genome Characterization Initiative

The Cancer Genome Characterization Initiative [https://ocg.cancer.gov/programs/cgci] is a series of studies sponsored by the Office of Cancer Genomics [https://ocg.cancer.gov/] (OCG) at the National Cancer Institute [https://www.cancer.gov/] (NCI). This program utilizes molecular characterization to uncover distinct features of rare cancers such as HIV+ associated cancers and rare pediatric cancers. The Burkitt Lymphoma Genome Sequencing Project [https://ocg.cancer.gov/programs/cgci/projects/burkitt-lymphoma] (BLGSP) is one of the projects available through GDC [https://portal.gdc.cancer.gov]. It explores genetic changes in patients with Burkitt lymphoma (BL) that could lead to better prevention, detection, and treatment of this rare and aggressive cancer.

About the Cancer Genome Characterization Initiative Data

CGCI data consists of 120 cases with RNA sequencing, miRNA sequencing, and whole-genome sequencing data. The NCI GDC houses all the clinical, biospecimen, and molecular characterization data with over 589 BAM, 339 TXT, 402 TSV, 237 BRC XML, 120 BRC PPS XML, and 93 BCR SSF XML files in around 50.28 TB of data. The Project ID in the GDC Data Portal is CGCI-BLGSP [https://portal.gdc.cancer.gov/projects/CGCI-BLGSP].

For more information on the CGCI data, please refer to these sites:

	CGCI Data Matrix [https://ocg.cancer.gov/programs/cgci/data-matrix]

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000235.v14.p2]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22CGCI%22%5D%7D%7D%5D%7D]

Accessing Cancer Genome Characterization Initiative Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the CGCI files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'CGCI'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

CPTAC Data Set

About the NCI Clinical Proteomic Tumor Analysis Consortium

The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium [https://proteomics.cancer.gov/programs/cptac] (CPTAC) is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis or proteogenomics.

About the NCI Clinical Proteomic Tumor Analysis Consortium Data Set

CPTAC data consists of whole-genome sequencing, whole-exome sequencing, RNA sequencing, and miRNA sequencing. The program analyzed more than 700 cases. The Genomic Data Commons (GDC) currently has controlled VCF, TSV, and BAM data available. The Project ID in the GDC Data Portal is CPTAC-2 [https://portal.gdc.cancer.gov/projects/CPTAC-2] and CPTAC-3 [https://portal.gdc.cancer.gov/projects/CPTAC-3].

For more information on the CPTAC data, please refer to these sites:

	CPTAC-2 dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000892]

	CPTAC-3 dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001287.v5.p4]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22CPTAC%22%5D%7D%7D%5D%7D&searchTableTab=files]

Accessing the NCI Clinical Proteomic Tumor Analysis Consortium Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the CPTAC files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'CPTAC'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

CTSP Data Set

About the Clinical Trials Sequencing Project

The Clinical Trials Sequencing Project [https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/clinical-trial-sequencing] (CTSP) is a joint collaboration from the National Cancer Institute (NCI) and the Division of Cancer Treatment and Diagnosis (DCTD) to promote the use of genomics in NCI-sponsored clinical trials and elucidate the molecular basis of response and resistance to therapies studied. Breast cancer, renal cell carcinoma, and diffuse large B-cell lymphoma are the cancer types that are currently under study.

About the Clinical Trials Sequencing Project Data

NCI utilized whole genome sequencing and/or whole-exome sequencing in conjunction with transcriptome sequencing to try to identify recurrent genetic alterations (mutations, deletions, amplifications, rearrangements) and/or gene expression signatures that would be important to the hypothesis(es) submitted by the investigators. The samples are processed and submitted for genomic characterization using pipelines and procedures established within The Cancer Genome Analysis (TCGA) project. There are 89 controlled access BAM files along with TSV files in the GDC.

For more information on the CTSP data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001175.v2.p2]

	GDC Data Portal [https://portal.gdc.cancer.gov/projects?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22projects.program.name%22%2C%22value%22%3A%5B%22CTSP%22%5D%7D%7D%5D%7D]

Accessing the Clinical Trials Sequencing Project Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the CTSP files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'CTSP'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

FM Data Set

About the Foundation Medicine

The Foundation Medicine Adult Cancer Clinical Data Set [https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/foundation-medicine/foundation-medicine] (FM) was a study conducted by Foundation Medicine Inc. (FMI), which is a molecular information company that specializes in precision medicine. FMI has generated genomic profiles for thousands of cancer patients, which they designed to match each patient with a personalized treatment plan.

About the Foundation Medicine Data

FM data set consists of more than 18,000 unique solid tumor samples that underwent genomic profiling on a single uniform platform as part of standard clinical care. The data set is derived from the FoundationOne® genomic profiling assay version 2 that interrogates exonic regions of 287 cancer-related genes and selected introns from 19 genes known to undergo rearrangements in human cancer. The Genomic Data Commons (GDC) currently has VCF, TSV, and MAF data available. There are more than 36,008 VCF files, 84 TSV files, and 42 MAF files available with, 36,050 of them that are Controlled Access and 84 files, which are Open Access. The project identification in the GDC Data Portal is FM-AD [https://portal.gdc.cancer.gov/projects/FM-AD].

For more information on the FM data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001179.v1.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22FM%22%5D%7D%7D%5D%7D&searchTableTab=files]

Accessing the Foundation Medicine Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the FM files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'FM'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

GENIE Data Set

About the AACR Project Genomics Evidence Neoplasia Information Exchange

The AACR Project Genomics Evidence Neoplasia Information Exchange [https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/genie] contains data generated from an international pan-cancer registry to serve as an evidence base for the entire cancer community. Genomic and baseline clinical data from more than 40,000 tumors has been made available in the GDC, following the efforts of AACR’s strategic and technical partners, Sage Bionetworks and Memorial Sloan Kettering Cancer Center.

About the AACR Project Genomics Evidence Neoplasia Information Exchange Data

The GENIE data set includes masked annotations, somatic mutations, gene level copy number scores, and transcript fusion analysis. The program analyzed more than 44,000 cases. The Genomic Data Commons (GDC) currently has MAF, TXT, and TSV controlled data available.

For more information on GENIE data, please refer to the site below:

	GDC Data Portal [https://portal.gdc.cancer.gov/projects?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22projects.program.name%22%2C%22value%22%3A%5B%22GENIE%22%5D%7D%7D%5D%7D]

Accessing the AACR Project Genomics Evidence Neoplasia Information Exchange Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the GENIE files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'GENIE'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

HCMI Data Set

About the Human Cancer Models Initiative

The Human Cancer Models Initiative [https://ocg.cancer.gov/programs/HCMI] (HCMI) is a collaborative international consortium that is generating novel, next-generation, tumor-derived culture models annotated with genomic and clinical data. The collaborating institutions are the National Cancer Institute [https://www.cancer.gov/] (NCI), Cancer Research UK [https://www.cancerresearchuk.org/funding-for-researchers/how-we-deliver-research/our-research-partnerships/human-cancer-models-initiative] (CRUK), Wellcome Sanger Institute [https://www.sanger.ac.uk/science/collaboration/human-cancer-model-initiative-hcmi] (WSI), and foundation Hubrecht Organoid Technology [https://hub4organoids.eu/] (HUB). The four Cancer Model Development Centers [https://ocg.cancer.gov/programs/hcmi/nci-cancer-model-development] (CMDCs), which are supported by the NCI as part of the HCMI, are Broad Institute of MIT and Harvard (BROAD), Cold Spring Harbor Laboratory (CSHL), Stanford University, and Weill Cornell Medical College.

About the Human Cancer Models Initiative Data

HCMI data consists of 23 cases with over 450 phenotyped subjects with whole-exome sequencing, RNA sequencing, and whole-genome sequencing data. The NCI GDC houses all the clinical, biospecimen, and molecular characterization data with over 460 VCF, 261 BAM, 123 TXT, 57 TSV, and 23 BRC XML files. The Project ID in the GDC Data Portal is HCMI-CMDC [https://portal.gdc.cancer.gov/projects/HCMI-CMDC].

For more information on the HCMI data, please refer to these sites:

	NCI Cancer Model Development [https://ocg.cancer.gov/programs/hcmi/nci-cancer-model-development]

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001486.v2.p2]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22HCMI%22%5D%7D%7D%5D%7D&searchTableTab=files]

Accessing the Human Cancer Models Initiative Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the HCMI files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'HCMI'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

MMRF Data Set

About the Multiple Myeloma Research Foundation

The Multiple Myeloma Research Foundation [https://themmrf.org/] (MMRF) seeks to provide resources and research for patients with multiple myeloma. MMRF began a ten-year study to track new Multiple Myeloma patients to create a rich data set which was led by researchers from the Dana Farber Cancer Institute, Celgene Corp., and the University of Arkansas for Medical Sciences. This trial was named CoMMpass.

About the Multiple Myeloma Research Foundation Data

The CoMMpass [https://themmrf.org/we-are-curing-multiple-myeloma/mmrf-commpass-study/] trial is a longitudinal observation study of 1000 newly diagnosed myeloma patients receiving various standard approved treatments. This trial aims to collect tissue samples and genetic information along with quality of life, disease, and clinical outcomes. CoMMpass data consists of 995 cases with RNA, whole-exome, and whole-genome sequencing data. The NCI GDC houses all the molecular characterization data with over 10,918 VCF, 6,577 BAM, 2,577 TXT, and 1718 TSV files in around 206.63 TB of data. The Project ID in the GDC Data Portal is MMRF-COMMPASS [https://portal.gdc.cancer.gov/projects/MMRF-COMMPASS].

For more information on the MMRF data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000748.v7.p4]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22MMRF%22%5D%7D%7D%5D%7D]

Accessing Multiple Myeloma Research Foundation Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the MMRF files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'MMRF'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

NCICCR Data Set

About the NCI Center for Cancer Research

The NCI Center for Cancer Research [https://ccr.cancer.gov/] (NCICCR) conducted a study on the Genomic Variation in Diffuse Large B Cell Lymphomas (DLBCL) through an integrative analysis of genetic lesions in 574 diffuse large B cell lymphomas (DLBCL). The study investigated genomic structural variation, genetic alteration, and its effect on the development and biology of lymphomas by using high throughput sequencing, gene expression, and methylation status.

About the NCI Center for Cancer Research Data

There were around 489 cases that were phenotyped, contributing Authorized-Access, individual-level data. The Genomic Data Commons currently has around 957 controlled access BAM files available. The Project ID in the GDC Data Portal is NCICCR-DLBCL [https://portal.gdc.cancer.gov/projects/NCICCR-DLBCL].

For more information on the NCICCR data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001444.v2.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22NCICCR%22%5D%7D%7D%5D%7D]

Accessing the NCI Center for Cancer Research Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the NCICCR files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'NCICCR'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

OHSU Data Set

About the Oregon Health & Science University

The Oregon Health & Science University [https://www.ohsu.edu/] contains data generated from chronic neutrophilic leukemia (CNL), atypical chronic myeloid leukemia (aCML), and unclassified myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN-U), which are a group of rare, heterogeneous myeloid disorders.

About the Oregon Health & Science University Data

The data set consists of whole-exome and RNA sequencing on a cohort of over 100 cases of these rare hematologic malignancies. It presents the complete survey of the genomic landscape of these diseases to date. The Project ID in the GDC Data Portal is OHSU-CNL [https://portal.gdc.cancer.gov/projects/OHSU-CNL].

For more information on the OHSU data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001799.v1.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22OHSU%22%5D%7D%7D%5D%7D&searchTableTab=files]

Accessing the Oregon Health & Science University Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the OHSU files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'OHSU'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ORGANOID Data Set

About the Pancreas Cancer Organoid Profiling Program

The Pancreas Cancer Organoid Profiling Program is from the Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer [https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&DbFrom=gap&Cmd=Link&IdsFromResult=1898172&LinkName=gap_pubmed] study and contains data generated from a collection of patient-derived pancreatic normal and cancer organoids.

About the Pancreas Cancer Organoid Profiling Data Set

The data set consists of 70 cases and includes whole-genome, targeted exome, and RNA sequencing data on organoids as well as matched tumor and normal tissues. This data set is a valuable resource for pancreas cancer researchers, and those looking to compare primary tissue to organoid culture. The NCI GDC houses all the clinical, biospecimen, and molecular characterization data with over 130 VCF, 298 BAM, 165 TXT, and 110 TSV files in around 21.89 TB of data. The Project ID in the GDC Data Portal is ORGANOID-PANCREATIC [https://portal.gdc.cancer.gov/projects/ORGANOID-PANCREATIC].

For more information on the ORGANOID data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001611.v1.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22ORGANOID%22%5D%7D%7D%5D%7D]

Accessing Pancreas Cancer Organoid Profiling Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the ORGANOID files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'ORGANOID'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

TARGET Data Set

About the Therapeutically Applicable Research to Generate Effective Treatments

The Therapeutically Applicable Research to Generate Effective Treatments [https://ocg.cancer.gov/programs/target] (TARGET) program applied a comprehensive genomic approach to determine the molecular changes driving childhood cancers. Investigators formed a collaborative network to facilitate the discovery of molecular targets and translate those findings into the clinic. TARGET is managed by NCI’s Office of Cancer Genomics and Cancer Therapy Evaluation Program.

About the Therapeutically Applicable Research to Generate Effective Treatments Data

The ISB-CGC currently hosts several TARGET data sets in BigQuery. TARGET controlled-access data is available to authorized users in Genomic Data Commons and open-access data includes RNA-seq and miRNA-seq expression levels, and is available in BigQuery, along with the open-access clinical and biospecimen information.

The TARGET data is available at the GDC in the legacy archive [https://portal.gdc.cancer.gov/legacy-archive/search/f?filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22cases.project.program.name%22,%22value%22:%5B%22TARGET%22%5D%7D%7D%5D%7D] which contains over 10,000 files for over 5,000 cases. Virtually all of this data is low-level (and controlled-access) sequence data (including 1702 RNA-seq files, 765 miRNA-seq, with the remainder being WXS or WGS DNA-seq BAMs).
Some of this data has been reprocessed and is available on the main GDC Data Portal [https://portal.gdc.cancer.gov/projects?filters=~%28op~%27and~content~%28~%28op~%27in~content~%28field~%27projects.program.name~value~%28~%27TARGET%29%29%29%29%29]. This newer dataset so far includes 33,402 files representing 6,197 cases and totaling over 200 TB. Over half of the files are controlled-access files, including BAM, VCF, and MAF file types, based on WXS, RNA-seq, and miRNA-seq data. The remaining files are open-access files, including RNA-seq and miRNA-seq quantification, as well as clinical and biospecimen supplement files.

BigQuery Therapeutically Applicable Research to Generate Effective Treatments Data

The open-access TARGET data hosted by the ISB-CGC Platform includes:

	Clinical (de-identified) and Biospecimen data: these data were originally provided in XML files (Level-1)

	Gene (mRNA) expression data: these data were originally provided as TSV files (Level-3)

	microRNA expression data: these data were originally provided as TSV files (Level-3)

The information scattered over thousands of XLSX and TSV files at the GDC is provided in a much more accessible form in a series of
BigQuery tables.

For more information on TARGET data, please refer to the site below:

	GDC Data Portal [https://portal.gdc.cancer.gov/projects?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22projects.program.name%22%2C%22value%22%3A%5B%22TARGET%22%5D%7D%7D%5D%7D]

Accessing the Therapeutically Applicable Research to Generate Effective Treatments data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the TARGET files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'TARGET'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

TCGA Data Set

About The Cancer Genome Atlas

The Cancer Genome Atlas [https://cancergenome.nih.gov/] (TCGA) is a comprehensive and coordinated effort to accelerate the understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

The overarching goal of TCGA is to improve our ability to diagnose, treat and prevent cancer. To achieve this goal in a scientifically rigorous manner, the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) used a phased-in strategy to launch TCGA. A pilot project developed and tested the research framework needed to systematically explore the entire spectrum of genomic changes involved in more than 20 types of human cancer.

This massive effort was launched in 2006. The final samples were shipped in mid-2014, and analysis of the data produced by this program continues to this day.

About The Cancer Genome Atlas Data

The ISB-CGC hosts several TCGA datasets in BigQuery [https://cloud.google.com/bigquery/] and more data is available through the Genomic Data Commons [https://gdc.cancer.gov/] (GDC).

The vast majority (over 99%) of this petabyte of data consists of low-level sequence data, currently stored as files in the GDC (see figure below). Over the course of the TCGA project, this low-level (“Level 1”) data has been processed through a set of standardized pipelines and the resulting high-level (“Level 3”) data is frequently the data that is used in most downstream analyses. The ISB-CGC platform aims to make these different types of data accessible to the widest possible variety of users within the cancer research community.

[image: ../../_images/TCGASizeandComplexity.PNG]

The Cancer Genome Atlas Data Platforms

When working with any of the data types, it is important to also be aware of both the platform that was used to generate the underlying raw data as well as the pipeline that was used to process the data. For example, over the course of the TCGA study, DNA methylation data were obtained using first the Illumina HumanMethylation27 platform, and later using the HumanMethylation450 platform. Any analysis that combines data from these two platforms across a cohort of samples should take this into consideration. Another example where multiple platforms and/or pipelines were used to produce a single data type is the Level-3 gene expression data: most tumor samples were processed at UNC and the normalized gene-expression values are based on the RSEM method, while some tumor samples were processed at BCGSC and the normalized gene-expression values are based on RPKM.

The Cancer Genome Atlas Data Levels

For each type of data, there are typically three levels of data:

	Level 1 typically represents raw, unnormalized data

	Level 2 typically represents an intermediate level of processing and/or normalization of the data

	Level 3 typically represents aggregated, normalized, and/or segmented data

The results of integrative or pan-cancer analyses are sometimes referred to as “Level 4” data. More information about Data Level Classification [https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/data-levels] can be found on the NCI page.

The Cancer Genome Atlas Data Types

The TCGA data set is unique in that the tumor samples were assayed using a standard set of platforms and pipelines in order to produce a comprehensive data set including:

	DNA sequencing of tumor samples and matched-normals (typically blood samples) in order to detect somatic mutations

	SNP array-based DNA copy-number and genotyping analysis of tumor samples and matched-normals

	DNA methylation of tumor samples

	messenger RNA (mRNA) expression analysis of the tumor samples to capture the gene expression profile

	microRNA (miRNA) expression profiling of the tumor samples

In addition, protein expression for a significant fraction (~20%) of all tumor samples was obtained using RPPA (reverse phase protein array).

Open-Access The Cancer Genome Atlas Data

The open-access TCGA data includes:

	Clinical (de-identified) and Biospecimen data: these data were originally provided in XML files (Level-1)

	Somatic mutation data: these data were originally provided in MAF files (Level-2)

	DNA copy-number segments: these data were originally provided as segmentation files (Level-3)

	DNA methylation data: these data were originally provided as TSV files (Level-3)

	Gene (mRNA) expression data: these data were originally provided as TSV files (Level-3)

	microRNA expression data: these data were originally provided as TSV files (Level-3)

	Protein expression data: these data were originally provided as TSV files (Level-3)

	TCGA Annotations data: annotations were originally obtained from the TCGA Annotations Manager, and can be found on the GDC Data Portal [https://portal.gdc.cancer.gov/annotations]

The information scattered over tens of thousands of XML and TSV files at the GDC is provided in a much more accessible form in a series of BigQuery tables [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/BigQuery/data_in_BQ.html#tcga-clinical-biospecimen-and-molecular-data].

For more details, please see our Community Notebook Repository [https://github.com/isb-cgc/Community-Notebooks] for tutorials and code examples in Python and R.

Controlled-Access The Cancer Genome Atlas Data

The controlled-access TCGA data includes:

	SNP array CEL files: these Level-1 data files were provided by the DCC and include over 22,000 files for both tumor and matched-normal samples

	VCF files: these Level-2 data files were provided by the DCC and include over 15,000 files produced by several different centers (primarily Broad and BCGSC)

	MAF files: these “protected” mutation files (Level-2) were provided by the DCC (note that these files were not generated uniformly for all tumor types)

	
	DNA-seq BAM files: these Level-1 data files were provided by CGHub

	
	over 37,000 of these files are available in Google Cloud Storage (GCS)

	roughly 90% of these BAM files contain exome data, the remaining 10% contain whole-genome data

	BAM index (BAI) files are also available for all BAM files

	
	mRNA- and microRNA-seq BAM files: these Level-1 data files were provided by CGHub

	
	over 13,000 mRNA-seq BAM files are available in GCS

	over 16,000 miRNA-seq BAM files are available in GCS

	mRNA-seq FASTQ files: these Level-1 data files were provided by CGHub and include over 11,000 tar files

The Cancer Genome Atlas Data Repository History

Historically, the data was obtained from two former TCGA data repositories:

	TCGA DCC: the TCGA Data Coordinating Center which provided a Data Portal from which users could download open-access or controlled-access data. This portal provided access to all TCGA data except for the low-level sequence data.

	CGHub: the Cancer Genomics Hub was NCI’s secure data repository for all TCGA BAM and FASTQ sequence data files.

In June of 2016, the official data repository for all TCGA and other NCI CCG data is the NCI’s Genomic Data Commons [https://gdc.cancer.gov/] (GDC). The original TCGA data, aligned to the hg19 human reference genome is available from the GDC’s legacy archive [https://portal.gdc.cancer.gov/legacy-archive/search/f] while the new “harmonized” data, realigned to hg38 is available from the GDC’s main data portal [https://portal.gdc.cancer.gov/].

Accessing The Cancer Genome Atlas Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the TCGA files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'TCGA'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

TCGA Radiology and Pathology Image Data Set

The TCGA images from The Cancer Imaging Archive [http://www.cancerimagingarchive.net/] (TCIA) as well as the pathology and diagnostic images previously available from the Cancer Digital Slide Archive [http://cancer.digitalslidearchive.net/] (CDSA) are all now available in open-access Google Cloud Storage (GCS) buckets and can be explored through the Web App.

Metadata for these files can be found in BigQuery, in the ISB-CGC metadata data sets [https://console.cloud.google.com/bigquery?p=isb-cgc&d=metadata&page=dataset].

Radiology Images

Over 1.4 million radiology image files in DICOM [https://en.wikipedia.org/wiki/DICOM] format, grouped together into over 20,000 ZIP files are available in a GCS bucket called gs://isb-tcia-open/ [https://console.cloud.google.com/storage/browser/isb-tcia-open/]. Each ZIP file may contain hundreds of images or just a single image.

The BigQuery metadata table, isb-cgc.metadata.TCGA_radiology_images contains the full URLs to these ZIP files, e.g.:

gs://isb-tcia-open/images/TCGA-GBM/TCGA-06-5413/TCIA.image.1.3.6.1.4.1.14519.5.2.1.4591.4001.275342915307453440215680715165.zip

The metadata table also includes the patient identifier in TCGA “barcode” format, e.g. TCGA-06-5413 (which is also part of the GCS URL). Other information available in the table includes the body part examined, image modality, patient age, etc.

Pathology Images

Over 30,000 TCGA tissue slide images in SVS [http://openslide.org/formats/aperio/] format, are also available in GCS, in the open-access bucket gs://gdc-tcga-phs000178-open/ [https://console.cloud.google.com/storage/browser/gdc-tcga-phs000178-open/].

These files were uploaded from the GDC legacy archive [https://portal.gdc.cancer.gov/legacy-archive/search/f?filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22files.data_format%22,%22value%22:%5B%22SVS%22%5D%7D%7D%5D%7D].

The BigQuery metadata table, isb-cgc.metadata.TCGA_slide_images contains the full URLs to these SVS files, e.g.:

gs://gdc-tcga-phs000178-open/9c4b1b5c-b5cf-48f6-bf41-047ceb8c883c/TCGA-CR-7365-01A-01-TS1.811bb2b7-66e3-4694-891b-10b436ec300d.svs

as well as image metadata and the TCGA case and sample “barcode” which can be used to join this table with other TCGA clinical, biospecimen and molecular data tables.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

VAREPOP Data Set

About the VA Research for Precision Oncology Program

The Research for Precision Oncology Program (RePOP) [https://www.research.va.gov/research_in_action/Precision-Oncology-Program.cfm] is a research activity that established a cohort of Veterans diagnosed with cancer and had genomic analyses performed on their tumor tissue as part of the standard of care. All data relevant to a patient’s cancer and cancer care was collected under RePOP, including patient demographics, comorbidities, genomic analysis, treatments, medications, lab values, imaging studies, and outcomes. All RePOP participants signed/verbal informed consent and signed HIPAA authorization to have their data stored and shared from RePOP’s Precision Oncology Program Data Repository (PODR).

About the VA Research for Precision Oncology Program Data

The VARePOP data set consists of 7 cases with somatic mutation and targeted sequencing data. The Genomic Data Commons currently has controlled access BAM and VCF files. The Project ID in the GDC Data Portal is VAREPOP-APOLLO [https://portal.gdc.cancer.gov/projects/VAREPOP-APOLLO].

For more information on the VAREPOP data, please refer to these sites:

	dbGaP site [https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?view_pdf&stacc=phs001374.v1.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22VAREPOP%22%5D%7D%7D%5D%7D]

Accessing the VA Research for Precision Oncology Program on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the VAREPOP files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'VAREPOP'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

WCDT Data Set

About the Genomic Characterization of Metastatic Castration Resistant Prostate Cancer

The overarching goal of the Genomic Characterization of Metastatic Castration-Resistant Prostate Cancer study is to illuminate molecular mechanisms of acquired resistance to therapeutic agents, and particularly androgen signaling inhibitors, in the treatment of metastatic castration-resistant prostate cancer (mCRPC).

About the Genomic Characterization of Metastatic Castration Resistant Prostate Cancer Data

West Coast Prostrate Cancer Dream Team (WCDT) data is available from the biopsies of castration-resistant prostate cancer metastases collected during the study. The data consists of 101 cases with over 202 whole-genome sequencing files and 792 RNA sequencing files consisting of 83TB of data. The Project ID in the GDC Data Portal is WCDT-MCRPC [https://portal.gdc.cancer.gov/projects/WCDT-MCRPC].

For more information on the WCDT data, please refer to these sites:

	dbGaP site [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001648.v1.p1]

	GDC Data Portal [https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22WCDT%22%5D%7D%7D%5D%7D]

Accessing Genomic Characterization of Metastatic Castration Resistant Prostate Cancer Data on the Cloud

Besides accessing the files on the GDC Data Portal, you can also access them from the GDC Google Cloud Storage Bucket, which means that you don’t need to download them to perform analysis. ISB-CGC stores the cloud file locations in tables in the isb-cgc.GDC_metadata data set in BigQuery.

	To access these metadata files, go to the Google BigQuery console.

	Perform SQL queries to find the WCDT files. Here is an example:

SELECT active.*, file_gdc_url
FROM `isb-cgc.GDC_metadata.rel22_fileData_active` as active, `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as GCSurl
WHERE program_name = 'WCDT'
AND active.file_gdc_id = GCSurl.file_gdc_id

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

COSMIC Data Set

About the Catalog Of Somatic Mutations In Cancer

The Catalogue Of Somatic Mutations In Cancer [https://cancer.sanger.ac.uk/cosmic] (COSMIC) is the world’s largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer. The COSMIC tables in BigQuery are produced in collaboration with the Wellcome Trust Sanger Institute [http://www.sanger.ac.uk/] to provide a new way to explore and understand the mutations driving cancer.

About the Catalog Of Somatic Mutations In Cancer Data

The BigQuery data sets contain all of the CSV and TSV files available for download from the COSMIC Download page [http://cancer.sanger.ac.uk/cosmic/download]. Please explore the tables at (after registering for access):

	isb-cgc.COSMIC_v91_grch38 [https://console.cloud.google.com/bigquery?p=isb-cgc&d=COSMIC_v91_grch38&page=dataset]

	isb-cgc.COSMIC_v91_grch37 [https://console.cloud.google.com/bigquery?p=isb-cgc&d=COSMIC_v91_grch37&page=dataset]

Accessing the Catalog Of Somatic Mutations In Cancer Data

To access the BigQuery tables, you will need to link your Google identity with a COSMIC account.

	New COSMIC User: Register [https://cancer.sanger.ac.uk/cosmic/register] for a new COSMIC account. During registration, fill in the ‘Google ID’ field with your base* Google Identity.

A COSMIC account and academic use of the data is free, though commercial use of the COSMIC data is subject to licensing fees. Please review the COSMIC terms [https://cancer.sanger.ac.uk/cosmic/terms] for more information.

	Registered COSMIC User: After logging in, navigate to the Account Settings [https://cancer.sanger.ac.uk/cosmic/myaccount] page and fill in the ‘Google ID’ field with your base* Google Identity.

Once you have linked your Google identity to a COSMIC account, ISB-CGC will obtain your Google Identity. After a short delay, you will have “viewer” access to the COSMIC tables in BigQuery. You will then be able to view the data sets in the BigQuery UI under the isb-cgc Google Cloud project and query the tables with your own Google Cloud Project.

We also have tutorials on using the COSMIC data sets with BigQuery in our Community Notebook Repository that you can check out.

	Intro to COSMIC in BigQuery Notebook (Python) [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/Intro_to_COSMIC_in_BigQuery.ipynb]

If you are new to using ISB-CGC Google BigQuery data sets, see the Quickstart Guide to learn how to obtain a Google identity and how to set up a Google Cloud Project. Additionally, we offer free cloud credits for cancer research; you can find out more here.

If you can’t successfully run a query or see the COSMIC tables under the isb-cgc project, please verify [https://accounts.google.com/ForgotPasswd]
that the Google ID you have provided is a valid Google account. If you are still unable to run a query or view the data sets under the isb-cgc Google Cloud Project, please contact us at feedback@isb-cgc.org.

* e.g. the base account tb@mylab.org might have a longer-form alias like thomas.brown@mylab.org

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Pan-Cancer Atlas BigQuery Data

The Pan-Cancer Atlas BigQuery data set [https://console.cloud.google.com/bigquery?page=dataset&d=pancancer_atlas&p=isb-cgc&redirect_from_classic=true] was produced in
collaboration with the TCGA research network [https://cancergenome.nih.gov/],
the GDC [https://gdc.cancer.gov/], and the NCI [https://www.cancer.gov/]. This rich data set allows for an integrated examination of the full set of tumors characterized in the robust TCGA dataset and provides a new way to explore and analyze the processes driving cancer.

The availability of Pan-Cancer Atlas data in BigQuery enables easy integration of this resource with other public data sets in BigQuery, including other open-access datasets made available by the ISB-CGC
(see this [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Hosted-Data.html]
and that [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/Reference-Data.html]
for more details on other publicly accessible BigQuery data sets).

About Pan-Cancer Atlas Data

The Pan-Cancer Atlas BigQuery tables (accessed here [https://console.cloud.google.com/bigquery?page=dataset&d=pancancer_atlas&p=isb-cgc&redirect_from_classic=true]) mirror most of the files shared by the Pan-Cancer Atlas initiative on the GDC PanCanAtlas Publications page [https://gdc.cancer.gov/about-data/publications/pancanatlas].

The tables are generally unmodified uploads of the files in the GDC Pan-Cancer Atlas [https://gdc.cancer.gov/about-data/publications/pancanatlas]. The Filtered_* tables were annotated as appropriate with ParticipantBarcode, SampleBarcode, AliquotBarcode, SampleTypeLetterCode, SampleType and TCGA Study. Subsequently the tables were filtered using the Pan-Cancer Atlas whitelist (which is the list of TCGA barcodes included in the Pan-Cancer Atlas). Two exceptions are the (public) MC3 MAF file and the TCGA-CDR resource.

Use of the tables starting with Filtered_* is recommended.

See examples of statistical Jupyter notebooks using the Pan-Cancer Atlas data here [https://github.com/isb-cgc/Community-Notebooks/tree/master/RegulomeExplorer].

Adding the Pan-Cancer Atlas tables to your workspace

If you are new to using ISB-CGC Google BigQuery data sets, see the Quickstart Guide to learn how to obtain a Google identity and how to set up a Google Cloud Project.

To add public BigQuery data sets and tables to your “view” in the Google BigQuery Console [https://bigquery.cloud.google.com/dataset/isb-cgc:pancancer_atlas] you need to know the name of the GCP project that owns the dataset(s).
To add the publicly accessible ISB-CGC datasets (project name: isb-cgc) which includes the Pan-Cancer Atlas data set (dataset name: pancancer_atlas)
follow these steps [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/bigqueryGUI/LinkingBigQueryToIsb-cgcProject.html].

You should now be able to see and explore all of the Pan-Cancer Atlas tables and also tables of other ISB-CGC data sets.
Clicking on the blue triangle next to a dataset name will open it and show the list of tables in the data set. Clicking on a table name will open up information about the table in main panel, where you can view the Schema, Details, or a Preview of the table.

Additional projects with public BigQuery data sets which you may want to explore (repeating
the same process will add these to your BigQuery side-panel) include genomics-public-data and
google.com:biggene.

You can also search for and learn about Pan-Cancer Atlas tables through the ISB-CGC BigQuery Table Search UI [https://isb-cgc.appspot.com/bq_meta_search/]. Type ‘pancancer’ in the Search box in the upper right-hand corner to filter for them.

Pan-Cancer Atlas BiqQuery Query Example

Ready to query? Follow the steps below to run a query in the Google BigQuery Console. More details are here [https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui].

	Login [https://accounts.google.com/Login] to your Google account (Chrome [https://www.google.com/chrome/browser/desktop/index.html] is the preferred browser);

	Go to the BigQuery Console [https://console.cloud.google.com/bigquery?page=dataset&d=pancancer_atlas&p=isb-cgc&redirect_from_classic=true].

Let’s query using the MC3 somatic mutation table.

	Click on COMPOSE NEW QUERY button.

	Paste the sample query below into the text-box.

	Within a second or two you should see a green circle with a checkmark below the lower right corner of the New Query text-box. – If instead you see a red circle with an exclamation mark, click on it to see what your Syntax Error is.

	Once you do have the green circle, you can click on it to see a message like: “Valid: This query will process 76.3 MB when run.”

	To execute the query, click on RUN!

WITH
mutCounts AS (
 SELECT
 COUNT(DISTINCT(Tumor_SampleBarcode)) AS CaseCount,
 Hugo_Symbol,
 HGVSc
 FROM
 `isb-cgc.pancancer_atlas.Filtered_MC3_MAF_V5_one_per_tumor_sample`
 GROUP BY
 Hugo_Symbol,
 HGVSc
),
mutRatios AS (
 SELECT
 HGVSc,
 Hugo_Symbol,
 CaseCount,
 (CaseCount/SUM(CaseCount) OVER (PARTITION BY Hugo_Symbol)) AS ratio
 FROM
 mutCounts
)
SELECT *
FROM
 mutRatios
WHERE
 CaseCount>=10
 AND ratio>=0.2
 AND HGVSc is not null
ORDER BY
 ratio DESC

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Reference Data

ISB-CGC Hosted Reference Data

To facilitate working with the TCGA and other program data tables that the ISB-CGC is hosting in BigQuery, additional
reference data tables have been created. Others are hosted by Google Cloud Life Sciences. Suggestions for more are welcome at feedback@isb-cgc.org.

For additional details about each of these tables, please use the BigQuery Table Search [https://isb-cgc.appspot.com/bq_meta_search/]. To find the reference tables, select Genomic Reference Database under Category.

Genome Reference Data

Reference data that describes or annotates the human or other genomes is described in this section.
Reference data hosted by the ISB-CGC in BigQuery tables are available in the isb-cgc.genome_reference
data set [https://console.cloud.google.com/bigquery?p=isb-cgc&d=genome_reference&page=dataset]. Tables based on
gene-sets such as Ensembl and GENCODE can be used to find the genomic coordinates and identifiers
for genes of interest, to perform queries that join tables with gene-symbol based data
to tables with genomic-coordinate based data or tables that use other gene identifiers, for example.

	Program/Source

	Description

	ClinVar

	
	ClinVar [https://www.ncbi.nlm.nih.gov/clinvar/intro/] contains reports of the relationships among human variations and phenotypes.

	GRCh37

	GRCh38

	Cytoband/UCSC

	
	Cytoband to Genomic Coordinate Conversion

	liftOver_hg19_to_hg38 - This table provides a mapping of each hg19 position to the corresponding position in hg38, and can be used to perform a liftOver [https://genome.ucsc.edu/cgi-bin/hgLiftOver] operation in BigQuery.

	dbSNP

	
	dbSNP [https://www.ncbi.nlm.nih.gov/snp/] contains human single nucleotide variations, microsatellites, and small-scale insertions and deletions along with publication, population frequency, molecular consequence, and genomic and RefSeq mapping information for both common variations and clinical mutations

	B150 GRCH37P13

	B151 GRCH37P13

	Ensembl

	
	GRCh37: Release 75, the final build of the Ensembl [http://uswest.ensembl.org/index.html] gene-set mapped to GRCh37

	GRCh38: Release 87, the most recent Ensembl [http://uswest.ensembl.org/index.html] gene-set mapped to GRCh38

	GENCODE

	
	GRCh37: Release 19, the final build of the GENCODE [https://www.gencodegenes.org/] gene-set mapped to GRCH37

	GRCh38: Releases 22, 23, and 24 from GENCODE [https://www.gencodegenes.org/] are all available (because the TCGA data has been reprocessed by at least one center using each of these three different releases)

	Gene Ontology Consortium

	
	Tables based on GO [http://www.geneontology.org/] annotations and the GO [http://www.geneontology.org/] ontology.

	Genome-Wide SNP Array

	
	The technical documentation for the Affymetrix Genome-Wide Human SNP Array 6.0 array can be found here [http://www.affymetrix.com/catalog/131533/AFFY/Genome-Wide+Human+SNP+Array+6.0#1_3].

	gnomAD

	
	gnomAD [https://gnomad.broadinstitute.org/] aggregates and harmonizes both exome and genome sequencing data from a wide variety of large-scale sequencing projects.

	GRCH37

	ICD

	
	International Classification of Diseases [https://www.who.int/classifications/icd/en/]

	ICD-10 Chapters

	ICD-10 Codes

	ICD-O-3 Morphology

	ICD-O-3 Site

	Infinium

	
	Infinium EPIC HG19 and HG38 Manifests

	Infinium HM27 HG19 and HG38 Manifests

	Infinium HM450 HG19 and HG38 Manifests

	ISB-CGC

	
	Gene Names Mapping: Data was loaded from multiple sources including NCBI, HGNC, ENSEMBL in Feb 2018 to simplify mapping between HGNC IDs, HGNC symbols, Entrez Gene IDs, Ensembl Gene IDs, Pubmed IDs,and RefSeq IDs.

	Kaviar

	
	The latest hg19- and hg38-based Kaviar [http://db.systemsbiology.net/kaviar/] databases are available. Kaviar [http://db.systemsbiology.net/kaviar/] is a compilation of SNVs, indels, and complex variants observed in humans, designed to facilitate testing for the novelty and frequency of observed variants.

	miRBase

	
	GRCh37: The human portion of version 20 of the miRBase [http://www.mirbase.org/] database; including genomic coordinates for human microRNAs.

	GRCh38: The human portion of version 21 of the miRBase [http://www.mirbase.org/] database; including genomic coordinates for human microRNAs.

	GRCh38: The human portion of version 22 of the miRBase [http://www.mirbase.org/] database; including genomic coordinates for human microRNAs.

	miRTarBase

	
	The updated miRTarBase [http://nar.oxfordjournals.org/content/early/2015/11/19/nar.gkv1258.long] database (release 6.1)

	Reactome

	
	Ensembl2Reactome

	miRBase2Reactome

	UniProtKB

	
	UniProtKB [https://www.uniprot.org/help/uniprotkb] is the central hub for the collection of functional information on proteins, with accurate, consistent and rich annotation.

	UniProtKB Mapping

Platform Reference Data

Some reference data is necessary to work with data generated by specific platforms such as the
Illumina DNA Methylation array. The platform_reference data set [https://console.cloud.google.com/bigquery?p=isb-cgc&d=GTEx_v7&page=dataset] contains information on the Illumina DNA Methylation Platform.

	Program/Source

	Description

	GDC

	
	HG38 DNA Methylation - Most of the DNA Methylation data produced by the TCGA project was obtained using the Illumina Infinium HumanMethylation450 (aka 450k) BeadChip array. Some of the earlier tumor types were assayed on the older, 27k array.

	Infinium

	
	Illumina [https://www.illumina.com/] DNA Methylation Annotation - Platform annotation information has been uploaded into BigQuery; each CpG locus is uniquely identified as described in this technical note [http://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_cpg_loci_identification.pdf] and this unique identifier can be used to look up and cross-reference data between the TCGA DNA methylation data table and the platform annotation table.

	Cytoband/UCSC

	
	DNA Methylation Annotation Liftover to HG38 Coordinates - The original Illumina-provided CpG coordinates have been “lifted over” from hg19 to hg38.

Genotype Tissue Expression (GTEx) Project Data

The GTEx_v7 data set [https://console.cloud.google.com/bigquery?p=isb-cgc&d=GTEx_v7&page=dataset] contains tables with molecular and clinical data (gene read, gene expression, sample attributes, subject phenotype) loaded from the Genotype-Tissue Expression (GTEx) Project Data Portal on November 2017. See the GTEx Portal [https://gtexportal.org/] for more information.

University of California Santa Cruz (UCSC) TOIL RNA-seq recompute project Data

The Toil_recompute data set [https://console.cloud.google.com/bigquery?p=isb-cgc&d=Toil_recompute&page=dataset] contains data made available by the UCSC TOIL RNA-seq recompute project. The goal of the project was to process ~20,000 RNA-seq samples to create a consistent meta-analysis of four datasets free of computational batch effects. This is best used to compare TCGA cohorts to TARGET or GTEx cohorts. For more details, see the Zena Browser Data Pages [https://xenabrowser.net/datapages/].

Other Reference Data Sources

Google Cloud Life Sciences maintains a list of
publicly available data sets [https://cloud.google.com/genomics/docs/public-datasets/],
including Reference Genomes,
the Illumina Platinum Genomes, information about the Tute Genomics Annotation table, etc.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

File Metadata

The ISB-CGC hosts several metadata tables to help users determine which files are available in Google BigQuery. Preview and query these tables conveniently and interactively from the BigQuery web UI or scripting languages such as R and Python, or the command-line using the cloud SDK utility bq.

For additional details about each of these tables, please use the BigQuery Table Search [https://isb-cgc.appspot.com/bq_meta_search/]. To find the metadata tables, select File Metadata under Category.

Below, the ‘#’ represents the GDC release number and should be replaced by it when using the tables, for example: isb-cgc.GDC_metadata.rel24_caseData. The metadata is split up into several tables per GDC release as follows:

	Table

	Description

	rel#_caseData

	List of all of the cases in GDC

	rel#_fileData_current or rel#_fileData_active

	List of the currently active cases in GDC along with information related to those cases

	rel#_fileData_legacy

	Same as the previous table but with legacy data instead

	rel#_aliquot2caseIDmap

	“helper” table to help map between identifiers at different levels of aliquot data. The intrinsic hierarchy is program > project > case > sample > portion > analyte > aliquot

	rel#_slide2caseIDmap

	“helper” table to help map between identifiers at different levels of tissue slide data. The intrinsic hierarchy is program > project > case > sample > portion > slide

	rel#_GDCfileID_to_GCSurl

	Gives the Google Cloud Storage location for each file

For examples of querying the metadata tables, please see the ISB-CGC Community Notebook GitHub Repository [https://github.com/isb-cgc/Community-Notebooks].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC Web Interface (Web App)

The ISB-CGC Web Interface (Web App) [https://isb-cgc.appspot.com/] provides robust functionality for the user to analyze the ISB-CGC cancer data through a user interface. Without needing to use any programming, you can select and filter data from one or more public data sets (such as TCGA, CCLE, and TARGET), combine with your own uploaded data and analyze using a variety of built-in plot types. There is also a built-in Integrative Genomics Viewer (IGV) and Radiology Viewer.

Over time we will be updating and enhancing this web interface based on your feedback. We welcome your ideas and needs. Please use this link [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback] to provide them.

Data used by the Web App

The Web App performs its data retrieval and counts on ISB-CGC Google BigQuery tables which are based on the latest GDC data release. This means that you will see current data, but that the same queries in the Web App could produce different results if they were run during different time periods, when the Web App was based on different GDC data releases.

Sharing Cohorts between the Web App and the API

Cohorts are one of the central concepts used when analyzing large datasets. Cohorts can be created either in the Web App or via the ISB-CGC REST API. What may not be as clear is that cohorts created by one of the systems can be viewed and used in the other. In other words, you can create a cohort using the API and use it in the Web App or you can create a cohort in the Web App and use it in the API. This can give users significant flexibility in creating and sharing their cohorts.

Choosing a Web Browser

The Web App was optimized for use with the Google Chrome web browser. Most of the functionality should work with recent versions
of other web browsers (e.g. Firefox, Safari, Internet Explorer). If you find an issue and you are not using Chrome, please
try using Chrome to see if the issue appears to be browser specific.

Web App Time Zone

Also please note the system is set in Pacific time, so if you see some inconsistencies with the time in the workbooks or cohorts you generated, it could be due to this.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Login to Web App

The ISB-CGC Web App is accessed through a Google Account identity (freely available with a new account [https://accounts.google.com/signupwithoutgmail?hl=en] or by linking to an existing email account [https://accounts.google.com/SignUpWithoutGmail]). If you are not logged into the ISB-CGC Web App, you will be presented with this page:

[image: ../../_images/startscreen-nologin.png]
You login through the “Sign In” link in the upper right.

Also on this page are links to:

	ISB-CGC BigQuery Table Search

	Cancer Data File Browser

	Chromosomal Aberations & Gene Fusions (Mitelman) database

	Cohort Builder/Data Explorer

	Pipelines and APIs

	Notebooks

	Controlled Access Data

If your screen looks like this:

You have successfully logged into ISB-CGC Web App! Please subscribe for updates provided by ISB-CGC.

[image: ../../_images/IfYourScreenLooksLikeThis.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Menu Bar

Clicking on the word Menu in the upper-right corner of your browser window (next to your name) will display the
blue menu bar. You can make this menu bar disappear by clicking on the blue X or the word Menu again.

For additional details about each menu item, see the corresponding section in this user guide.

[image: ../../_images/WebApp-MenuBar.png]
The MENU bar supplies links for the following Web App features:

	DASHBOARD - This menu item takes you to Your Dashboard, the Web App home page.

	WORKBOOKS - Workbooks store the Analyses you create, and their related data. You can create worksheets as you explore and analyze selected underlying data (i.e. Genes and miRNAs, Variables and Cohorts). From the Workbook menu item, you can select the following:

	Saved Workbooks - Displays all your saved workbooks and allows you to edit, duplicate or delete the workbooks.

	Create a New Workbook - Allows you to create a new workbook by selecting the data source and analysis type.

	PROGRAMS - This menu item provides a shortcut to the programs you have created if you uploaded your own data.

	Saved Programs - Here you can:

	Edit or delete a Saved Program

	Start a New Workbook

	Create a New Program

	Upload Program Data - Here you can:

	Create a new program for analysis. To create a new program you provide a name for program, name for your project, and attach files that meet our Data Type requirements. Please see Program Data Upload for more information on data type accepted by the ISB-CGC.

	Public Programs - Here you can:

	View the public programs (TCGA, CCLE, TARGET) that are currently in the ISB-CGC system.

	ANALYSES - From here you can Create, Edit Details, Duplicate, Delete, or Share Analyses. You can use a specific analysis type to create a new workbook customized with the specific data (Genes and miRNAs, Variables, Cohorts) you have selected. The plot types that you can select are:

	Bar Chart

	Histogram

	Scatter Plot

	Violin Plot

	Cubby Hole Plot

	SeqPeek

	OncoPrint

	OncoGrid

	GENES & miRNA - From this menu selection you can Manage Gene and miRNA Favorites, Create Gene and miRNA Favorite(s) or Select Genes and miRNAs for a New Workbook.

	Manage Gene & miRNA Favorites - Here you can:

	Edit or Delete a Saved Gene and miRNA Favorite(s)

	Start a New Workbook

	Create a New Gene and miRNA Favorites

	Create Gene & miRNA Favorite - Here you can:

	Create a Gene & miRNA Favorite for Analysis. To Create a New Gene and miRNA Favorite - You provide a name and select the Gene and/or miRNA. You can upload a stored Gene and miRNA List or type in Gene name or miRNA (Note: This will auto fill as you type in Gene name or miRNA name). To aid in Gene selection, you can access the HGNC portal (Hugo Gene Nomenclature Committee) via the “View Gene Identifiers” link under this Menu selection. Also, to aid in miRNA selection, you can access the miRBASE via the “View miRNA Identifier” link next to the View Gene Identifiers link.

	Select Genes & miRNA for a New Workbook - This sub-menu has two features:

	Apply to New Analysis - Select a Favorite(s) Gene and miRNA from the list shown of stored Favorites to Analyze

	Add (+) Apply to New Analysis - Basically navigates back to the Create Gene and miRNA Favorite (See description above)

	VARIABLES - This menu item allows you to Manage Variables Favorite or Create New Favorite.

	Manage Variable Favorites Lists - Shows your saved Variables as Favorites:

	Edit

	Delete

	Start New Workbook - (Create a New Workbook using the selected Favorite Variables)

	Create Favorite Variable(s) List - Here you “Name” your new favorite and select variables from four available data sources to incorporate in your analysis:

	Common Variables

	Favorite(s) Saved

	Programs (Previously Uploaded and Saved)

	Select Variables for a New Workbook - This sub-menu has two features:

	Apply to New Worksheet - Select a Favorite(s) variables from the list shown of stored Favorites to Analyze

	Add (+) Apply New Variable List - Basically navigates back to the Create Variables Favorite (See description above)

	COHORTS - Here you can Manage Saved Cohorts, select Public Cohorts and Select Cohorts for a New Workbook or Create your First Cohort if it’s empty.

	Manage Saved Cohorts - There are two tabs:

	Saved Cohorts - Displays previously created cohorts which can be selected. If no cohorts exist, you can create your first Cohort here by selecting the “Create Your First Cohort” link displayed and selecting Donors and Data Types. Within Saved Cohorts you can:

	Create a “New Workbook” from a saved Cohort

	Delete a Saved Cohort

	Set Operations (i.e., Union, Intersection or complement) from a Base or Subtracted Cohort.

	Public Cohorts - Displays any public cohorts which can be selected.

	Create a “New Workbook” from a saved Public Cohort

	Set Operations (i.e., Union, Intersection or complement) from a Base or Subtracted Cohort.

	Create a New Cohort - Allows you to create new cohorts using filters (such as Gender, disease code, sample type) and barcodes.

	Public Cohorts - This menu item takes you to the same Public Cohorts page described above.

	Select Cohorts for a New Workbook - This menu item takes you to the same Saved Cohorts and Public Cohorts pages described above.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Dashboard

Upon signing in with a Google account identity, you will be presented with the following page:

[image: ../../_images/My-Dashboard.png]
This is your personal “Dashboard” where your Analyses, Gene and miRNA Lists, Variable Lists, Cohorts, and Saved Programs are readily accessible. Descriptions of how to use each component of this user interface are provided in the individual subsections of this user guide.

Multiple Sample Analyses can be grouped into Workbooks (and saved for later use, editing, and sharing). Workbooks are used to group together multiple related analyses, and can be used for sharing groups of analysis results with specific groups of people. For example, you may use one Workbook for an on-going study of gene mutations and pathways involved in Head and Neck Cancer (with one research group you are part of), and use a different Workbook for another on-going study with a different set of collaborators in which you are
investigating survival-time after diagnosis for patients with different types of lung cancers. Think of workbooks as containers in which you can create and group related analyses, and which you can share with specific colleagues.

Breadcrumbs show you where you are in the Web App as you move from one section to another (figure below).
These are live links, and can be used to rapidly navigate from one section of the interface to another.

[image: ../../_images/Breadcrumbs.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Workbooks

Workbooks store the analyses you create, and their related data. You can create multiple analyses in a workbook and store them on separate worksheets within the workbook. The worksheets you create to conduct analysis are based on the source data selected (i.e. Genes and miRNAs, Variables and Cohorts). Workbooks can be used to:

	Group together multiple related analyses.

	Share analysis results with specific groups of people.

For example, you can create a Workbook (i.e., Disease A) which consists of identifying gene mutations and pathways involved in Head and Neck Cancer (and share it with research Group A). And then you could create another Workbook (i.e., Disease B) with a different group of researchers (Group B) investigating the average time after diagnosis of death for different lung cancers. Think of workbooks as virtual “excel spreadsheets”. Various related analyses can be created in individual worksheets (“Tabs” within the spreadsheet) and grouped together in one workbook (the overall spreadsheet).

Create a New Workbook

On Your Dashboard, there is a Saved Workbooks panel. This panel displays any previously created, saved workbooks. If you do not have any saved workbooks you will see “Workbooks store the analyses you create, and their related data.” text in the panel. To create a new workbook, click on the Create a New Workbook link.

Selecting Create a New Workbook from the WORKBOOKS menu dropdown also displays a screen where you can create a new workbook.

[image: ../../_images/CreateWorkbook.png]
Follow these steps to create a workbook:

	From the Workbook creation panel, select an Analysis Type (i.e., Bar Chart, Histogram, Scatter Plot, Violin Plot, Cubby Hole Plot, SeqPeek, OncoPrint or OncoGrid).

Analysis Type Description

	Bar Chart - This chart is used to plot a single categorical feature for one or more cohorts. It generates vertical lines to represent the type of data being used. The X axis shows categorical information being used while the other axis (Y axis) displays categorical data chosen in the edit analysis settings.

	Histogram - This chart is used to plot a single numerical feature for one or more cohorts. It generates vertical lines to represent the type of data being used. The X axis shows numerical information being used while the other axis (Y axis) displays numerical data chosen in the edit analysis settings.

	Scatter Plot - This chart is used to plot two numerical features (X & Y axis) for one or more cohorts. Can also color code points by a single categorical feature.

	Violin Plot - This chart is used to plot a categorical feature on the X axis versus a numerical feature on the Y axis. Points in the plot can be colored by another categorical feature.

	Cubby Hole Plot - This chart is used to plot two categorical features. Boxes are colored by their related p-values.

	SeqPeek - This visualization shows where somatic mutations have been observed on a linear representation of a specific protein. Each horizontal strip represents the protein, with data from different tumor types (aka cohorts or studies) shown stacked one on top of the other.

	OncoPrint - This chart is used to plot multiple genomic alterations (somatic mutation) events across a set of samples using color-coded glyphs. OncoPrint is developed and provided by cBioPortal.

	OncoGrid - This chart is used to visualize the top mutated genes across programs/projects and the number of cases affected. You can also view the mutation frequency, clinical data, data format types, number of gene sets and the number of cases affected.

Notes:

	A user has the option to make the axis logarithmic if the plot can display continuous numerical data, e.g. mRNA expression levels.

	For Violin Plot and Scatter Plot you can select multiple cohorts as your Color By Feature. This will cause the Legend to list all the cohorts that the sample is associated to. Please be aware you’ll end up with lots of permutations if you have lots of samples that belong to many different cohorts.

	For OncoPrint, OncoGrid, and SeqPeek analyses, a default gene list is provided. Genes with consensus score of 6 or higher are added to the default gene list. (Ref: Bailey et al., Cell. 2018 Apr 5;173(2):371-385.e18. doi: 10.1016/j.cell.2018.02.06 [https://www.sciencedirect.com/science/article/pii/S009286741830237X?via%3Dihub])

	You will then select Genes and miRNAs or Variables (or, optionally both).

Genes and miRNAs

Selecting this link (or the ‘+’ adjacent to it) displays the Data Source | Gene & miRNA Favorites screen showing previously created “Gene and miRNA Favorites”. Click the Apply to Worksheet to apply or click Apply New Gene & miRNA List to create a new list and apply. Any Gene and miRNA List you create here will automatically be added to your Gene and miRNA Favorites list and can be selected for additional analysis later. (See Gene and miRNA Favorites for details.)

Variables

Selecting this link (or the ‘+’ adjacent to it) displays the Data Source | Variable Favorites screen showing previously created “Variables Favorites”. Click the Apply to Worksheet to apply or click Apply New Variable List to create a new list and apply. Any Variable Favorites you create here will automatically be added to your Variable Favorites and can be selected for additional analysis later. (See Variable Favorites for details.)

	Select your Cohort - Cohorts allow the user to create custom groupings of the samples and/or cases that can be used for further analysis.

Selecting this link (or the ‘+’ adjacent to it) displays the Data Source | Cohorts screen showing previously created “Cohorts”. Click the Apply to Worksheet to apply or click Filter or Barcodes button to create a new cohort and apply. Any Cohorts you create here will automatically be added to your Cohorts list and can be selected for additional analysis later.

The user can also add multiple Cohorts to the worksheet if desired. More information about Cohorts can be found here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Saved-Cohorts.html].

	Select Edit Plot Settings - This will display the Plot Settings panel displaying the applicable X & Y axis settings (i.e. Categorical or Numerical based on the analysis type selected). Depending on the analysis type selected (e.g., Bar chart, Histogram, Scatter Plot, Violin Plot, Cubby Hole Plot, SeqPeek, OncoPrint or OncoGrid) additional specifications may appear for selection.

	Select Toggle Sample Selection - After a plot has been displayed, using the Toggle Sample Selection button allows you to create a smaller cohort from within the plot itself.

	Select Redraw - After a plot has been displayed, using the Redraw button will reset the analysis to its original setting after being zoomed-in or moved.

	Select Download - After a plot has been displayed, using the Download button will allow you to download the analysis as a SVG, PNG, or a JSON file.

	Select Toggle Full Screen - After a plot has been displayed, using this button will display the plot to the full screen.

Note: If you wish to use your own data in graphing, please review the documentations on how to upload your own data and on how to graph your own data. Using your own data uses a slightly different approach than is described here.

Saved Workbooks

Selecting Saved Workbooks from the WORKBOOKS menu dropdown displays a screen which lists all of your saved workbooks, and information about the workbooks, including Version and Build, Name, number of Worksheets, Ownership and Last Updated.

To the left of each Workbook, dropdown options allow you to Edit, Duplicate or Delete the Workbook.

	Edit - Selecting Edit displays a popup screen which allows you to update the Workbook name, build and description.

	Duplicate - Selecting Duplicate enables you to make a copy of the worksheet. Note that this will create a copy of the worksheet and reference the cohorts, variables, and gene lists used in the workbook, but will not make duplicates of the cohort, variables, and gene lists used in the workbook.

	Delete - This option will delete the workbook.

Clicking on the workbook Name will display the Workbook Details screen.

Workbook Details Screen

On the top of the Workbook Details Screen are the Edit Details, Duplicate and Delete buttons. They perform the same functions as described for the workbook dropdown menu options on the Saved Workbooks screen, described above.

[image: ../../_images/WorkbookDetails.png]

Share a Workbook

Clicking the Share button allows you to share the workbook in the Web App with users you select by entering the user’s email.

The User will receive an email message with a link to your shared workbook explaining that you want to share a workbook with them and that you have invited them to join. If the email address you entered is not registered with ISB-CGC, a message displays, “The following user emails could not be found; please ask them to log into the site first:(email entered).”

Manipulation of Workbooks and Worksheets

Creating A Worksheet - By selecting the “+” next to an existing worksheet, a user can create a new worksheet to create a new analysis. You can give the new worksheet a unique name and provide a worksheet description. This is an ideal way for the user to easily have access to different graphs with the same data in the same workbook.

Worksheet Drop Down Menu - The worksheet will have a drop down menu that allows the user to edit, duplicate or delete the worksheet. Click the downward pointing arrow next to the name of the worksheet that is open.

Edit Details - This item allows the user to edit the name of the worksheet and also give a brief description on the worksheet being used for analysis. You can also change the build from HG19 to HG38 using this feature. Changing the build allows you to graph data from either builds.

Duplicate - This item allows the user to create a duplicate worksheet in the workbook for further analysis and comparison.

Delete - This item will only appear when you are working with multiple worksheets. This will permanently delete the worksheet from the workbook.

Edit Plot Settings - This function allows you to select new Plot Settings for the selected analysis type.

Note: When selecting a gene or miRNA for either the X-axis or Y-axis variable, you will be prompted to select a specification. If you select Gene Expression you have the option of choosing a Select Feature. If you select the Copy Number specification you can choose a Value Filter. If you select the Protein specification you can select a Protein Filter. If you select the Mutation specification you can select a Value Filter. If you select a miRNA expression you can select a Select Feature.

Enable Sample section and Edit Analysis Settings - Enable Sample Selection (shown in the image below) allows you to select samples from displayed analysis and save that selection to a new cohort for further drill down analysis. The Edit Analysis Settings allows you to change the variables you wish to use for your analysis (varies by which analysis you choose). Finally, if you select miRNA you can select specification miRNA Expression and you will be prompted to select a feature.

[image: ../../_images/edit_analysis_finger.PNG]

Comment on a Workbook

Any user who owns or has had a workbook shared with them can comment on it. To open comments, use the Comments button at the top right. A right sidebar will appear and any previously comments will be shown.

On the bottom of the comments sidebar, you can create a new comment and save it. It should appear at the bottom of the list of comments.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Programs

Uploading your own data is a way of creating custom groupings of the samples and/or cases that you are interested in analyzing further along with the data that is already preexisting in our system, using tools that are on the system. You may frequently re-use the data that was uploaded in multiple analyses. Creating a Program allows you to do this. If you have any existing Programs with data uploaded, they will appear here for you to view, edit and share.

Upload Program Data

Selecting Upload Program Data from the PROGRAMS menu dropdown displays the Register a Google Cloud Project screen, or if you already have a registered Google Cloud Project, it will display the Data Upload screen.

Or, from Your Dashboard, click on the Upload Program Data link in the Saved Programs panel at the bottom of the page.

If you already have Programs created, they will be listed in the Saved Programs panel of your dashboard. Click on the Saved Programs link in that panel and this will take you to a page that displays the details of your existing Programs. Alternatively, to go directly to a given Program, click on its name and you will be taken to the program details page of that program.

Registering Cloud Storage Buckets and BigQuery Datasets

Registering a Google Cloud Storage Bucket and a BigQuery Data Set is a prerequisite for using your own data in ISB-CGC. (Please note: The names of the buckets and data sets are case sensitive.)

How To Register Buckets and Data sets

Once you have created a bucket and a dataset in the Google Cloud Console of your Google Cloud Project, you will need to register them with your project name using the Web App.

Step 1: Click on your user icon in the upper right or Account Details from the drop down menu under your name.

[image: ../../_images/Register_Step_1.png]
Step 2: Click on the View button under Google Cloud Projects.

[image: ../../_images/Register_Step_2.png]
Step 3: Click on the project you wish to use. If you have not registered a project, follow the instructions here.

[image: ../../_images/Register_Step_3.png]
Step 4: Use the “Register Cloud Storage Bucket” or “Register BigQuery Dataset” links to add buckets and datasets as needed.

[image: ../../_images/Register_Step_4.png]

Data Upload Page

A New Program

To start an entirely new program, users should click on the A New Program tab on the Data Upload screen. This will bring up a form where a new program can be defined. Users should fill out the required fields (Program Name, Project Name) and any optional fields (Program Description, Project Description) that would be helpful. Clicking on the Select File(S) button will bring up a dialog to select the data file for upload.

NOTE: You can upload multiple files in a single step. The Type drop-down should be used to indicate what data type the file represents. If the data type is one of the choices besides Other, the file will have to conform to the specifications below. For a more complete description of the options on this page, see the Data Upload Page Components section.

Files and File Formats

The Upload Program Data uses a number of predefined file formats to get data into the system and make it available for use. The Other/Generic file format is the most flexible. This format assumes that the first row of the file contains the column headers and all subsequent rows contain data. The remaining file formats are all matrix formats where the first column (or columns in some data types) contain identifiers like gene or miRNA name. The first row contains sample identifiers and the “cells” contain the actual data values. Examples of the accepted matrix format files are shown below:

NOTE: For the matrix files, the text case matters for the required columns (lower case is different from upper case). In addition, the ISB-CGC system will not validate any identifiers such as barcodes or gene names. It is up to the user to make sure that uploaded data is correctly identified.

	DNA Methylation

This is a simple matrix file. The first column should have the header Probe_ID. Sample barcodes should be the headers for all remaining columns.

	Probe_ID

	Barcode 1

	Barcode 2

	Barcode N

	Probe ID 1

	Value 1

	Value 2

	Value N

	Probe ID 2

	Value 1

	Value 2

	Value N

	Probe ID N

	Value 1

	Value 2

	Value N

	Gene Expression

The Gene Expression matrix file has two required columns:

	Name: This is the accession number for the gene.

	Description: This is the gene symbol for the gene.

	Name

	Description

	Barcode 1

	Barcode 2

	Barcode N

	Accession 1

	Gene name 1

	Value 1

	Value 2

	Value N

	Accession 2

	Gene name 3

	Value 1

	Value 2

	Value N

	Accession N

	Gene name N

	Value 1

	Value 2

	Value N

	microRNA

There is one required and one optional column for microRNA:

	miRNA_ID: This is generally the ID for the miRNA_ID; required.

	miRNA_name: This can be used to provide alternative names for the miRNA; optional. If not present, the BigQuery data table will have null in this column.

	miRNA_ID

	miRNA_name

	Barcode 1

	Barcode 2

	Barcode N

	miRNA ID 1

	Alt name 1

	Value 1

	Value 2

	Value N

	miRNA ID 2

	Alt name 2

	Value 1

	Value 2

	Value N

	miRNA ID N

	Alt name N

	Value 1

	Value 2

	Value N

	Protein Expression

Protein Expression has three required columns:

	Protein_Name: This is the name or symbol for the protein.

	Gene_Name: This is the name of the gene associated with the protein.

	Gene_Id: This is the accession number for the gene.

	Protein_name

	Gene_Name

	Gene_Id

	Barcode 1

	Barcode 2

	Barcode N

	Protein 1

	Gene Name 1

	Gene ID 1

	Value 1

	Value 2

	Value N

	Protein 2

	Gene Name 2

	Gene ID 2

	Value 1

	Value 2

	Value N

	Protein 3

	Gene Name 3

	Gene ID 3

	Value 1

	Value 2

	Value N

	Other/Generic

Files in Other/Generic format are not matrix files, but rather have the data in columns. The order of the columns is very flexible, and the upload interface will allow users to define what kind of data is in each of the columns. The only requirement is that one, and only one, of the columns should be sample barcodes. In addition, all rows must have the same number of columns. Any completely blank columns will be flagged and should be removed. Any columns containing blank entries will have null used for the blanks in the BigQuery data table.

NOTE: Currently, each Sample Barcode can only be represented once in a file. Files with the same barcode on multiple rows will cause a failure. If you have multiple data values for a single barcode (like gene expression values for multiple genes) you will either have to create a matrix file or upload multiple files using Other/Generic.

[image: ../../_images/MouseProject.PNG]

Project description and file selection

Clicking on the Next button brings up a form where users will select which bucket and BigQuery data set the file upload should use. These buckets and data sets were registered according to the process above. The Platform and Pipeline fields can contain any useful description a user wishes to provide.

[image: ../../_images/Mouse_bucket_and_dataset.png]
Lastly, the user should click on the Upload Data button to start the process. Users will first see a page with a message indicating their data is being processed. Refresh the screen occasionally until either the final page is displayed or an error is shown indicating a problem with loading the file. Your data is being loaded into the BigQuery table you specified earlier for this data set.

[image: ../../_images/Mouse_processing.PNG]

Correcting Data Uploaded As Other

If your data does not fit into any of the existing pre-defined matrix formats, the Other data type will allow users to upload data that is in a tabular format. In this format, the first row of the file is assumed to be the description of each of the columns and all subsequent rows are assumed to be data. The system will attempt to define what kind of data are in each column; however this process may not always be correct and users must review the column data type assignments before proceeding.

In the example shown below, the automated process has identified two columns as potentially containing Sample Barcodes and has further misidentified a column containing decimal data (numeric float values) as containing categorical (text) data. The user will need to correct both instances so there is only one Sample Barcode column and define the expression data as decimal.

[image: ../../_images/OtherExample.PNG]

A New Project For An Existing Program

Adding a new project to an existing program follows the same steps as creating a new program. However, instead of filling out the new program information fields, users should click on the A New Project For An Existing Program tab and select an existing program from the drop-down menu. All other steps for describing and uploading the file will remain the same.

[image: ../../_images/MouseExisting.png]

Data Upload Page Components

This section describes the features found on the Data Upload page.

Sharing User Uploaded Programs

This will share the web view of your uploaded program with users you select by entering the users email. The user will receive an email
message with a link to your shared uploaded program explaining that you wanted to share a program with them and that you have invited
them to join. If the email address you entered in not registered in the database, you are prompted with a message saying, “The following user emails could not be found; please ask them to log into the site first:(email entered).”

System Data Dictionary Link

This link goes to the System Data Dictionary which is a comprehensive list of all clinical data fields and possible values. This dictionary can be helpful in aligning metadata from the imported program to ISB-CGC data fields.

High Level Data Files

High level data files usually represent some level of data analysis as opposed to raw files. High level files can be used in Workbooks and visualized alongside ISB-CGC data.

Low Level Files for API Access

Files uploaded as low-level files for API access will not be usable in the Web App, but rather will appear in the user’s Google Storage Bucket. This feature is intended for files like BAM or VCF files that contain more raw data.

File Type

This is the data type of the uploaded file. Currently the allowed data types are:

	Gene Expression

	miRNA Expression

	Protein Expression

	Methylation

	Other

File Format Requirements

All files must be tab delimited and meet the formatting requirements described in Files and File Formats.

[image: ../../_images/MouseProjectAnnotated.png]

Saved Programs

Selecting Saved Programs from the PROGRAMS menu dropdown displays the Programs screen, SAVED PROGRAMS tab. This screen displays your saved programs and allows you to edit or delete them, as well as start a new workbook using your favorite.

Clicking on the Upload Data button will take you to the Register a Google Cloud Project screen.

Public Programs

Selecting Public Program from the PROGRAMS menu dropdown displays the Programs screen, PUBLIC PROGRAMS tab. This screen displays details about the three public programs (TCGA, CCLE and TARGET) currently available in the Web App. It displays the number of projects, the ownership and the last date each program was updated.

Clicking the + adjacent to each program will display a list of all projects in the program, and their last updated dates.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Analyses

This feature allows you to create, edit details, duplicate, delete, or share analyses. You can customize new workbooks with selected
data (Genes and miRNAs, Variables, Cohorts) and the following plot types:

	Bar Chart

	Histogram

	Scatter Plot

	Violin Plot

	Cubby Hole Plot

	SeqPeek

	OncoPrint

	OncoGrid

Start New Workbook With…<Plot Type>

Selecting Start New Workbook With and one of the above plot types from the Analyses menu dropdown displays a screen which enables you to create, edit details, duplicate, delete, or share analyses.

This is the same screen that is displayed when you choose to create a workbook using the Create a New Workbook link from Your Dashboard or the WORKBOOK menu, except that the Analysis Type field is prepopulated with your selected plot type.

[image: ../../_images/Analyses-Dropdown.png]

Browse All Analyses

Selecting Browse All Analyses from the Analyses menu dropdown displays a screen which provides a visual example and a written description of each type of plot. This information can help you determine which type of plot would be useful in your analysis.

From here, click on the Start a New Workbook <Plot Type> link to go to a screen which enables you to build your analysis.

[image: ../../_images/Analyses-Descriptions1.png]
[image: ../../_images/Analyses-Descriptions2.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Genes and miRNAs

This feature allows you to create and manage Gene and miRNA lists for inclusion in workbooks and use in subsequent analyses.

Create a Gene & miRNA Favorite

Selecting Create Gene & miRNA Favorites from the GENES & miRNAs menu dropdown displays the Create Gene & miRNA Favorites screen.

To create a new Gene & miRNA Favorite:

	Name your new favorite; you can create many favorites and use them later when working with workbooks.

	Specify the Gene(s) and/or miRNA(s) to include in this list. You can do this by:

	Uploading a pre-existing list using the Upload Gene and miRNA List link

	Entering Genes and miRNAs by typing them into the input box (with auto-completion support).

	To aid in Gene selection, you can access the HGNC portal (Hugo Gene Nomenclature Committee) via the View Gene Identifiers [http://www.genenames.org/] link.

	To aid in miRNA selection, you can access the miRBase via the View miRNA Identifiers [http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa] link.

	If duplicate symbols are entered they will be marked for your deletion or automatically dropped when the list is saved. If an unrecognized item is entered it will also be flagged for your attention.

	Click Save As Favorite.

[image: ../../_images/Gene_Favorite.png]

Manage Gene & miRNA Favorites

Selecting Manage Gene & miRNA Favorites from the GENES & miRNAs menu dropdown displays the Saved Gene & miRNA Favorites screen. This screen displays your saved Gene & miRNA Favorites and allows you to edit or delete them, as well as start a new workbook using your favorite.

Clicking on the Create New Favorite button will take you to the Create Gene & miRNA Favorite screen.

Select Genes & miRNAs for a New Workbook

Selecting Select Genes & miRNAs for a New Workbook from the GENES & miRNAs menu dropdown displays the Data Source | Gene & miRNA Favorites screen. This screen displays your saved Gene & miRNA Favorites and allows you to apply them to a new workbook.

	Check the box adjacent to your favorite and click the Apply to New Worksheet button to create a new workbook using your Gene & miRNA Favorite.

	Click the Apply New Gene & miRNA List button to create a new favorite. This takes you to the Create Gene & miRNA Favorite screen.

Resources for understanding and working with miRNAs and gene identifiers:

	The National Human Genome Research Institute (NHGRI) [http://www.genome.gov/genetics-glossary] created the Talking Glossary of Genetic Terms to help everyone understand the terms and concepts used in genetic research. In addition to definitions, specialists in the field of genetics share their descriptions of terms, and many terms include images, animation and links to related terms.

	The miRBase [http://www.mirbase.org/index.shtml] created a microRNA database center to enable researchers to understand the published miRNA sequences and annotations.

	Hugo Gene Nomenclature Committee (HGCN) [http://www.genenames.org]

	National Center for Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Variables

Creating a variable favorites list is a way of creating custom groupings of the samples and/or cases that you are interested in analyzing further. For example, you can create a variable favorites list that spans across multiple projects, only contains samples for which certain types of data are available, or focuses on specific phenotypic characteristics. A Variable Favorites list can be included in a workbook.

Create Variable Favorites List

To create a variable list from Your Dashboard, click on the Create Variable Favorites link which will display the Create Variable Favorite screen.

Or, from the menu dropdown, select Create Variables Favorite List from the VARIABLES menu dropdown.

To create a new Variable Favorite:

	Name your new favorite; you can create many favorites and use them later when working with workbooks.

	Select attributes and features for your variable list by performing one or more of these actions:

	Common Filter Selection - Click on a program (TCGA, CCLE, TARGET) to display relevant filters (attributes and features) under the COMMON tab.

	Check the checkbox adjacent to each feature that you are interested in. They will display in the Selected Variables panel. (Note that checking these filters will also check the filters under the under programs, if they are on that list.)

	Clinical Filter Feature Search - Click on a program (TCGA, CCLE, TARGET) and then click the CLINICAL SEARCH tab. This filter allows the user to search by any clinical feature in the selected program that is present in the most recent data uploaded for that program.

	Enter one or more characters in the Feature Search field. A list of features containing these characters displays. Select a feature from the list and it will display in the Selected Variables panel.

	Favorites Filter Selection - Click on FAVORITES tab (in the same row as TCGA, CCLE and TARGET programs). This displays your existing Variable Favorite lists, and their component features. These features can now be selected for a new Variable Favorite list by checking the checkbox adjacent to each feature that you are interested in. They will display in the Selected Variables panel.

	User Data Filter Search- Click on USER DATA tab (in the same row as TCGA, CCLE and TARGET programs). This option allows you to select by filters that you have uploaded using the upload data functionality. It’s separated by projects within your program; a drop down list will display the associated features.

	Verify that all your selected filters are displayed in the Selected Variables panel on the right-hand side. Clicking Clear All will remove all selected filters.

	Click Save As Favorite to save the Variable list.

[image: ../../_images/Create_Variables.png]

Common Filter List by Program

	TCGA Common Filter
List

	CCLE Common Filter List

	TARGET Common
Filter List

	Year of Diagnosis

	Program

	WBC at
Diagnosis

	Residual Tumor

	Project Short Name

	Year of Diagnosis

	Neoplasm Histologic
Grade

	Disease Code

	Event Free Survival

	Disease Code

	Sample Type

	Days to Last Follow
Up

	Age at Diagnosis

	Gender

	Gender

	Vital Status

	Histology

	Days to Last Known
Alive

	Ethnicity

	Histological SubType

	Sample Type

	Person Neoplasm
Cancer Status

	Site Primary

	Project Short Name

	Sample Type

	
	Disease Code

	Menopause Status

	
	Race

	Histological Type

	
	Days to Birth

	BMI (Body Mass Index)

	
	Age at Diagnosis

	Tobacco Smoking
History

	
	Vital Status

	Pathologic Stage

	
	Days to Death

	HPV Status

	
	Program

	Program

	
	Ethnicity

	Gender

	
	

	Days to Last
Known Alive

	
	

	Preservation Method

	
	

	Project Short Name

	
	

	Race

	
	

	Tumor Tissue Site

	
	

Manage Variable Favorites List

Selecting Manage Variable Favorites List from the VARIABLES menu dropdown displays the Saved Variable Favorites screen. This screen displays your saved Variables Favorites and allows you to edit or delete them, as well as start a new workbook using your favorite.

	Editing a Variable Favorites List - Clicking the Edit button displays the Edit Variable Favorite screen, which shows all filters in the selected variable list. Any variables selected will be added to any existing variables in the list. Variables can also be removed from the favorite list. The title of the variable favorite list can be changed. To return to the previous view, you must either save any selected filters, or choose to cancel adding any new filters.

	Deleting a Variable Favorites List - Clicking the Delete button will delete the variable list.

	Apply To New Workbook button - Clicking on the Apply to New Workbook button will take you to a screen where you can create a new workbook using your variable list.

Select Variables for a New Workbook

Selecting Variables for a New Workbook from the VARIABLES menu dropdown displays the Data Source | Variables screen. This screen allows you to create a new workbook with the selected variables.

	Click the Create New Workbook With Selected Variables button to create a new workbook using your selected variables.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Cohorts

Cohorts are a way of creating custom groupings of the samples and/or cases that you are interested in analyzing further. You may frequently re-use a cohort in multiple analyses. Creating a “saved cohort” allows you to do this. If you have any existing saved cohorts, they will appear here for you to view, edit and share.

Create a New Cohort

To create a cohort from Your Dashboard, click on the Create a Cohort link in the Saved Cohorts panel at the bottom of the screen and select either “Filter” or the “Barcodes” from the dropdown. The Filter link will display the cohort creation page; filters are explained below. The Barcodes link will display a page where you can upload samples/cases barcodes and create a cohort from them. Currently you can only upload from three programs TCGA, CCLE, and TARGET.

If you already have saved cohorts, they will be listed in the Saved Cohorts panel. Click on the Saved Cohorts link in that panel and a page that with the details of your saved cohorts will display. Alternatively, to go directly to a given cohort, click on its name and the cohort details page of that cohort will display.

These functions can also be navigated to by using the drop down options in the COHORTS item on the menu bar.

[image: ../../_images/CreateCohort.png]

Cohort Creation - Filters

Using the list of filters on the left panel, you can select the attributes and features that you are interested in either from ISB-CGC data (TCGA, CCLE, TARGET) or user data. You are able to create a cohort with multiple program filters.

CCLE (The Cancer Cell Line Encyclopedia) data is an open access data set; therefore, a user does not need dbGaP permissions to view its sequence data with the IGV viewer.

By clicking on a feature, the field will expand and provide you with additional filtering options. For example, when you click on “Vital Status”, it expands and provides a list containing “Alive”, “Dead”, and “NA” as options you may choose from.

Selecting one or more of these will cause the filter(s) to appear in the Selected Filters panel and will update the Program Details panel with the Total Number of Samples based on the selected filters.

Individual selections within a filter group are “ORed” together, meaning if any of the conditions are met, they will be in the results. On the other hand, filters are “ANDed” together, meaning that data must meet all filter criteria in order to be selected. There may be times where you have no cases and samples in the results, based on the combination of filters you have chosen.

Program Selection Panel

The panel in the center of the screen, with four tabs called “TCGA DATA”, “CCLE DATA”, “TARGET DATA”, and “USER DATA” will allow you to create a cohort with programs in the system and data that you have uploaded.

	The TCGA, CCLE, and TARGET DATA tab each have three tabs called “CASE”, “DATA TYPE”, and “MOLECULAR” which allow you to apply filters to the cohorts you are creating using ISB-CGC hosted data.

	For the USER DATA tab, there is one tab called “PROJECTS & STUDIES” which allow you to filter by the projects or studies you have uploaded to the system.

Note: Selecting the program filter will add all samples pertaining to the program. Also there is a mouse over feature that will display the disease code long name if it’s part of the TCGA, CCLE, or TARGET data set.

Filter List by Program (Case and Data Tabs)

	TCGA Case Tab

	TCGA Data Tab

	CCLE Case Tab

	TARGET Case Tab

	TARGET Data Tab

	Program

	Pathology Image

	Program

	Program

	mRNA Gene Quantification

	Project Short Name

	Somatic Mutation

	Project Short Name

	Project Short Name

	miRNA Isoform Quantification

	Disease Code

	Copy Number Segment Masked

	Disease Code

	Disease Code

	miRNA Gene Quantification

	Vital Status

	mRNA Gene Quantification

	Gender

	Vital Status

	Aligned Reads

	Gender

	DNA Variation VCF

	Sample Type

	Gender

	

	Age at Diagnosis

	Aligned Reads

	Site Primary

	Age at Diagnosis

	

	Sample Type

	Protein Quantification

	Histology

	Sample Type

	

	Tumor Tissue Site

	miRNA Isoform Quantification

	Histological
SubType

	Race

	

	Histological Type

	miRNA Gene Quantification

	
	Ethnicity

	

	Pathologic Stage

	mRNA Isoform Quantification

	
	WBC at Diagnosis

	

	Person Neoplasm
Cancer Status

	Genotypes

	
	Year of Diagnosis

	

	Neoplasm Histologic
Grade

	DNA Methylation Beta

	
	Event Free Survival

	

	BMI (Body Mass Index)

	
	
	Days to Last Followup

	

	HPV Status

	
	
	Days to Last Known
Alive

	

	Residual Tumor

	
	
	Days to Birth

	

	Tobacco Smoking
History

	
	
	Days to Death

	

	Race

	
	
	
	

	Ethnicity

	
	
	
	

	Year of Diagnosis

	
	
	
	

	Menopause Status

	
	
	
	

	Days to Last
Known Alive

	
	
	
	

	Preservation Method

	
	
	
	

Molecular Tab

The Molecular Tab is only available for TCGA data. It enables the user to filter by Gene Mutation Status (creating a cohort based on the presence of a mutation (of various types) in a gene or genes).

To combine multiple gene filters, select AND (requires all filters to be met for the data to be filtered) or OR (at least one criteria needs to be met for the data to be displayed).

You can also filter by different genomic builds.

NOTES:

	If you use AND and do not see the data you are expecting in the filter, try OR instead. AND is a more restrictive criteria requiring all filters to be met, OR is less restrictive, requiring only one criteria to be met for the data to appear.

	Please add the term “AND” or “OR” in your saved cohort title since the type of combination used in your cohort does not display in the filters list for a saved cohort.

Programs & Projects Tab

The Programs & Projects Tab is only available for User Data. It displays the programs and projects that are part of the user data set.

Selected Filters Panel

This panel displays selected filters for each program. You have to toggle between program tabs to see the filters selected for each program.

If you have not saved the cohort yet, clicking on “Clear All” will remove all selected filters for that program and selecting an X beside a single filter will remove that filter.

Note that you cannot removed filters once the cohort has been saved. (See Set Operations below for more ways to add or remove filters from your cohorts.)

Details Panel

This panel shows the Total Number of Samples and Total Number of Cases in a cohort based on the selected filters. If there is a small “timer” icon, the calculation is taking place; the results should appear soon.

Clinical Features Panel

This panel shows a list of images (called “treemaps”) that give a high level breakdown of the selected samples for a
handful of features for the selected program:

	TCGA Clinical Features Panel

	CCLE Clinical Features Panel

	TARGET Clinical Features Panel

	Disease Code

	Disease Code

	Disease Code

	Vital Status

	Gender

	Vital Status

	Sample Type

	Site Primary

	Gender

	Tumor Tissue Site

	Histology

	Sample Type

	Gender

	Histological SubType

	Age At Diagnosis

	Age At Initial Pathologic
Diagnosis

	
	

By using the “Show More” button, you can see the last two tree maps. Mousing over an image shows the details of each specific section of the image and the number of samples associated with it.

Programs & Projects Panel

This panel displays a list of images (called “treemaps”) similar to the Clinical Features panel, but can only be found when the User Data tab is selected. This panel displays a high level breakdown of the projects and studies you have uploaded to the system. Another similarity to the Clinical Features panel is that hovering over the image will show details of the specific section of the image and the number of samples associated with it.

Saving the Cohort

Click the Save as New Cohort button when you are ready to save the cohort based on the filters you have set. You will be asked for a cohort name and the selected filters will be displayed. Enter the name and click the Create Cohort button.

NOTE: When working with multiple programs you will see a yellow notification box stating, “Your cohort contains samples from multiple programs. Please note that filters will only apply to samples from the program indicated by the tab they were chosen on - they will not apply to samples from other programs in this cohort.”

Cohort Creation - Barcodes

This feature will allow you upload or enter your own list of sample or cases barcodes from multiple programs. There is a blue instructions button present on both the UPLOAD and ENTER tabs.

Upload Tab

This feature allows uploading files with barcodes to create a cohort. Files must be in GDC Data Portal case manifest format, or in comma/tab-delimited case/sample/program format. The file can be a maximum of 32MB. Also, files must be in tab- or comma-delimited
format (TSV or CSV) and have an extension of .txt, .csv, or .tsv. After selecting the file and uploading it, the entries will be validated. Any entries which are found to be invalid will be listed, and you can choose to omit them and continue with cohort creation, or select a new file for verification and upload.

GDC Data Portal Case Manifest Files

GDC Data Portal case manifests can be obtained on the ‘Cases’ tab of the Exploration section of the data portal here [https://portal.gdc.cancer.gov/exploration].
JSON case manifests must have a .json extension, and will be validated against the GDC’s JSON schema. The minimum required properties for each entry in the JSON file are the project object and the submitter_id field. The project object must include the project_id property. All other properties will be ignored.

TSV case manifests must have a .tsv extension, and must contain the first three columns of the GDC TSV case manifest in the following order: Case UUID, Case ID, Project. Any other columns will be ignored. Do not remove the header row of the TSV case manifest.

Because the GDC Data Portal case manifest entries are cases, all samples from a case will be included in the cohort.

Below are the instructions which display when the Show Instructions button is clicked.

[image: ../../_images/CreateCohorts-Barcodes-Upload-Instructions1.png]
[image: ../../_images/CreateCohorts-Barcodes-Upload-Instructions2.png]

Enter Tab

This feature will allow you to manually input barcodes for cohort creation. There is a maximum length of 10000 characters for the text box.
Please use the file upload option if you need to upload more barcodes than will fit in that space.

Below are the instructions which display when the Show Instructions button is clicked.

[image: ../../_images/CreateCohorts-Barcodes-Enter-Instructions.png]

Manage Saved Cohorts

Selecting Manage Saved Cohorts from the COHORT menu dropdown displays the Cohorts screen, SAVED COHORTS tab. This screen displays your saved cohorts and allows you to view, edit, delete, set operations, and share them. In addition, you can start a new workbook using selected cohorts.

To view a cohort, click on the name of the cohort to display the cohort details. Alternately, you can view the cohort details by
clicking on its name in the “Saved Cohorts” panel on the “Your Dashboard” page.

From Cohorts screen, SAVED COHORTS tab, you can perform the following functions. Except for Set Operations, these functions are described in detail in the Cohort Details Screen section, as they are also available there.

	New Workbook

	Delete

	Set Operations

	Share

Set Operations

Clicking the Set Operations button displays a New Cohort screen where you can create new cohorts from two or more existing cohorts using the union, intersection or complement operations. The Set Operations button will only be available if at least two cohorts are selected on the Cohorts screen.

On the New Cohort screen, enter a name for the new cohort and select a set operation. The intersect and union operations can take any number of cohorts and in any order. The complement operation requires that there is a base cohort, from which the other cohorts will be subtracted.

Click Okay to complete the set operation and create the new cohort.

Note: To combine the user uploaded data and the ISB-CGC data, use the Set Operations function. This is possible since the list of barcodes is what is used to create the set operation. For example, to make a cohort of user data samples and ISB-CGC curated samples, Set Union must be used, and to filter user data which is an extension of TCGA or TARGET samples, Set Intersection must be used.

The figure below shows what the results of the set operations will be (represented by I for Intersect, U for Union, and C for Complement). There are two types of sets shown, those that overlap (on the left) and those that are nested (on the right). For the last row (complement operations), the “Subtracted” area is removed from the “Base” area to result in the Complement (C).

[image: ../../_images/SetOperations.PNG]

Cohort Details Screen

The cohort details screen displays the details of a specific cohort. The title of the cohort is displayed at the top of the page.

[image: ../../_images/CreateDetails.png]
The screen is divided into the following sections:

Current Filters Panel

This panel displays current filters on this cohort or any of its ancestors. Saved filters cannot be removed, but new ones can be added using Edit.

Cohort Details Panel

This panel displays the Internal ISB-CGC Cohort ID (the identifier you use to programmatically use this cohort through the APIs), and the number of samples and cases in this cohort. The number of samples may be larger than the number of cases because some cases may have provided multiple samples. This panel also displays “Your Permissions” which can be either Owner or Reader, as well as Revision History. If you have edited the cohort, the filters that were used to originally create the cohort are displayed under the “Creation Filters” header. The newly applied filters (afteroriginal creation) are displayed under the “Applied Filters” header.

TCGA DATA, CCLE DATA, TARGET DATA and USER DATA Tabs

A program tab will be enabled if there are selected filters for that program. When a tab is selected, the Clinical Features panel and the Data File Availability panels for that program display.

Clinical Features Panel

This panel shows a list of tree maps that give a high level break of the samples for a handful of features for the program view selected:

	TCGA Clinical Features Panel

	CCLE Clinical Features Panel

	TARGET Clinical Features Panel

	USER DATA Programs & Projects Panel

	Disease Code

	Disease Code

	Disease Code

	Program

	Vital Status

	Gender

	Vital Status

	Project

	Sample Type

	Site Primary

	Gender

	

	Tumor Tissue Site

	Histology

	Sample Type

	

	Gender

	Histological SubType

	Age At Diagnosis

	

	Age At Initial Pathologic
Diagnosis

	
	
	

Data File Availability Panel

This panel shows a parallel sets graph of available data files for the selected samples in the cohort. The large headers over the vertical bars are data types. Each vertical bar may be broken up to represent different platforms used to generate that type of data (and “NA” for samples for which data type is not available).

The sets of lines that “flow” from left to right indicate the number of samples for which each type of data files are
available. If you hover over a horizontal segment between two bars, you will see the number of samples that have both those data
type platforms. You can also reorder the vertical categories by dragging the headers left and right and reorder the
platforms by dragging the platform names up and down.

Cohort Details Screen functions:

Create a New Workbook

Clicking the New Workbook button brings you to a screen where you can create a new workbook using this cohort.

Edit a cohort

Clicking the Edit button displays the Filters panel. Any filters selected will be added to existing filters. To return to the previous view, save any newly selected filters using the Save Changes button, or cancel adding any new filters by clicking the Cancel link.

Comment on a cohort

Clicking the Comments button displays the Comments panel. Here anyone who can see this cohort (such as an owner or someone who has shared access to the cohort) can comment on it. Comments are shared with anyone who can view this cohort. They are ordered by newest on the bottom. Selecting the “X” on the Comments panel will close the panel.

Copy a cohort

To create a copy of the cohort, click on the Duplicate button. This will take you to a new copy of the cohort which has the same list of samples and cases and make you the owner of the copy.

This is how you create a copy of another researcher’s cohort that they have shared with you. (Note: If they later change their cohort, your cohort will not be updated; it will remain the same as it was at the time you duplicated it).

Delete a cohort

Click the Delete button to delete the cohort. Confirm by clicking the second Delete button presented.

File Browser

Clicking the File Browser button displays a screen with a list of data files associated with your current cohort.
This list includes all files which are stored on the Google Cloud, including both controlled access and open access data.

[image: ../../_images/CohortFileBrowser.png]
You can use “Show”, “Page”, “Previous” and “Next” to navigate through the list. The columns are sortable by selecting the column header. You can select a subset of the default columns to show by using the “Choose Columns to Display” tool.

You can filter by Genomic Build (HG19 or HG38) and view which platforms and files are available for the build selected.

You can filter by full or partial Case Barcode on all tabs. To remove the search key word, click the “X” button adjacent to it. Filtering by Case Barcode updates the number to the right of all the other filters.

You may also filter by data type, data format, platform, disease code, disease strategy, and/or experimental strategy. Selecting a filter will update the associated list. The numbers next to the filter refers to the number of files available for that filter.

The tabs “IGV”, “Pathology Images” and “Radiology Images” allow you to filter for files that show you respectively read-level sequence data (viewed using the IGV viewer), pathology images, and radiology images. Please note: only if you have authenticated as a dbGaP authorized user will you be able to select controlled access files to view in the IGV viewer (CCLE data does not require authorization to view the sequence data in the IGV viewer). Details of how to view Sequences, and Pathology and Radiology Images are provided below.

Viewing a Sequence

When available, sequences in a cohort can be viewed using the IGV viewer. To find those sequences that can be viewed, select the IGV link on the File Browser screen. The File Listing panel will display the files that can be viewed with the IGV viewer. Selecting the checkbox in the “View” column (maximum of file files) and clicking the Launch IGV button in the upper panel will display an IGV view of the selected sequence(s) data.

Controlled access files will be viewable by sequence ONLY if you have authenticated as a dbGaP-authorized user [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Gaining-Access-To-Controlled-Access-Data.html].

More information about Viewing a Sequence in the IGV Viewer.

Using the Image Pathology Viewer

When available, pathology images can be viewed using the caMicroscope tool (see more about caMicroscope provide here [http://camicroscope.org]). These are the pathology images that are associated with TCGA samples. To find images that can be viewed, open a saved cohort and select the File Browser button. You can also select the File Browser link from the Dashboard Saved Cohorts panel. The files associated with your cohort will be shown. Click on Pathology Images to see a list of available pathology images. Hovering over the File Name and clicking on “Open in caMicroscope” will open the image file in a new tab using caMicroscope. (HINT: using a smaller cohort will provide faster response in creating the list of files available).

To zoom into the image, either click the left button or use your wheel to zoom in. Use your mouse to move around the image. To zoom out of the image, shift-slick the left mouse button or use your wheel to zoom out. Selecting caMicroscope at the top of page will send you to the caMicroscope homepage. If you hover over the Slide Barcode section on the top right hand side you will see metadata information listed.

Viewing a Radiology Image

To find images that can be viewed, open a saved cohort and select the File Browser button. You can also click the File Browser link from the Dashboard Saved Cohorts panel. The files associated with your cohort will be shown. Click the Radiology Images tab to view a list of available radiology images. Hovering over the Study Instance UID column and clicking on “Open in CHIF Viewer” will open the series Selection panel in a new tab using Osimis DICOM. (HINT: Using a smaller cohort will provide faster response in creating the list of files available.)

For a more detailed step-by-step process of Viewing Radiology Images using the Osimis DICOM viewer please go here.

Download File List as CSV

To download a list of files that are part of this cohort, select the CSV button in the upper right on the File Listing panel (on all tabs) on the File Browser screen.

The file contains the following information for each file:

	Case Barcode

	Sample Barcode

	Program

	Platform

	Experimental Strategy

	Data Category

	Data Type

	Data Format

	Genomic Data Commons(GDC) File UUID

	Google Cloud Storage(GCS) location

	Genomic Data Commons(GDC) Index

	Index File Google Cloud Storage(GCS) location

	File Size

	Access Type (open or controlled access)

Export File List to BigQuery

To export the File List to BigQuery, select the BigQuery button on the File Browser screen. You will need to have registered a Google Cloud Project and a BigQuery dataset to be able to export to BigQuery. More information on how to register a BigQuery Dataset can be found here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/program_data_upload.html#registering-cloud-storage-buckets-and-bigquery-datasets-a-pre-requisite-for-using-your-own-data-in-isb-cgc]. You can either make a new table or append to an existing table. You can also give the table a unique name; if left blank, a name will be provided for the table.

The table will contain the following information (for each of the data type tabs):

	row

	cohort_id

	case_barcode

	sample_barcode

	project_short_name

	date_added

	build

	gdc_file_uuid

	gdc_case_uuid

	platform

	exp_strategy

	data_category

	data_type

	data_format

	cloud_storage_location

	file_size_bytes

	index_file_gdc_uuid

	index_file_cloud_storage_location

Export File List to Google Cloud Storage

To export the File List to Google Cloud Storage (GCS), select the GCS button on the File Browser screen. You will need to have registered a Google Cloud Project and a GCS Object to be able to export to GCS. More information on how to register a GCS bucket can be found here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/program_data_upload.html#registering-cloud-storage-buckets-and-bigquery-datasets-a-pre-requisite-for-using-your-own-data-in-isb-cgc]. You can also give the object a unique name; if left blank, a name will be provided for the bucket. You will be able to select either CSV or JSON as the file format for exporting into Cloud Storage. All exported files are converted into zip files.

The file will contain the following information (for each of the data type tabs):

	sample_barcode

	case_barcode

	cloud_storage_location

	file_size_bytes

	platform

	data_type

	data_category

	exp_strategy

	data_format

	gdc_file_uuid

	gdc_case_uuid

	project_short_name

	cohort_id

	build

	index_file_storage_location

	index_file_gdc_uuid

	date_added

Cohort export to CSV

Click the CSV button to download the cohort in CSV format. The file will contain a list of sample and cases IDs in the cohort.

Cohort export to BigQuery

Clicking the BigQuery button allows you to create a new table or append to an existing table. You must have registered a BigQuery data set with a Google Cloud Project on the registered Google Cloud Projects details page. More information on how to register a BigQuery data set can be found here.

If a user wants to export a cohort to their own premade table, it is required to have the following columns:

{
 'fields': [
 {
 'name': 'cohort_id',
 'type': 'INTEGER',
 'mode': 'REQUIRED'
 },{
 'name': 'case_barcode',
 'type': 'STRING',
 'mode': 'REQUIRED'
 },{
 'name': 'sample_barcode',
 'type': 'STRING',
 'mode': 'REQUIRED'
 },{
 'name': 'project_short_name',
 'type': 'STRING',
 'mode': 'REQUIRED'
 },{
 'name': 'date_added',
 'type': 'TIMESTAMP',
 'mode': 'REQUIRED'
 },{
 'name': 'case_gdc_uuid',
 'type': 'STRING'
 }
]
 }

Note: You shouldn’t ever set UUID to ‘required’ because sometimes a sample doesn’t have a UUID, and the attempt to insert a ‘null’ will cause the cohort export to fail.

Cohort export to Cloud Storage

Clicking the GCS button allows you to save the details of the cohort in a specified Google Cloud Storage location. You must have a registered Google Cloud Storage (GCS) bucket with a Google Cloud Project on the registered Google Cloud Projects details page. More information on how to register a GCS bucket can be found here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/program_data_upload.html#registering-cloud-storage-buckets-and-bigquery-datasets-a-pre-requisite-for-using-your-own-data-in-isb-cgc]. You will be able to select either CSV or JSON as the file format for exporting into Cloud Storage. All exported files are converted into zip files.

Share a cohort

Clicking the Share button allows you to share the cohort in the Web App with users you select by entering the user’s email.

If the email address you entered is not registered with ISB-CGC, a message displays, “The following user emails could not be found; please ask them to log into the site first:(email entered).”

Public Cohorts

Selecting Public Cohorts from the COHORT menu dropdown displays the Cohorts screen, PUBLIC COHORTS tab. This screen displays details about any public cohorts currently available in the Web App. It displays the cohort name, number of cases, number of samples and the last date each program was updated. Public cohorts can be used for “New Workbook” and “Set Operations”.

To create new workbooks based on a public cohort, check the checkbox adjacent to the public cohort and click on the New Workbook button.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Graphing User Data

Once a user has uploaded their own data [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/program_data_upload.html] to the Web App, that data can be visualized using the same graphing tools that are available for graphing TCGA, CCLE or TARGET data. However, the process for graphing user data is slightly different from how it is done for that data.

Important sections on the Web App Dashboard

The boxes in the figure below are links that are used to graph user data.

[image: ../../_images/TopAnnotated.png]

Step 1: Create a Cohort from your project

	From the Web App Dashboard, click on Create Cohort.

	Click on the User Data tab and select the project or study that will be the cohort.

	Save as a new cohort.

[image: ../../_images/CohortCreation.png]

Step 2: Create a Variables Favorite

	From the Web App Dashboard, click on Create Variable Favorites.

	Click on the Projects tab to see the user supplied studies.

	Select the variables that will be available to graph. Note that if the study has a large number of selections, using the browser search function can help locate the item.

	Give the variables a name and click on the Save as Favorite button.

[image: ../../_images/Variables_selected_genes.png]

Step 3: Graph the Favorites in a Workbook

	From the Web App Dashboard, click on Create a new Workbook.

	Under the Source Data heading, select the Variables and Cohorts that you wish to use in the graph. In each case you will be brought to a page listing all of the available Variables or Cohorts. Simply select the desired ones and then click the Add to Workbook button.

	Under the Analysis Type heading, select the appropriate graph type. This will cause a window to slide in from the right.

	Fill in the X and Y axis variables, select a variable to use for coloring and finally select the cohort to use.

[image: ../../_images/GraphingStart.png]

	Click on the Update Plot button to have the system gather the data and generate the plot.

	If changes need to be made to the plot, click on the Edit Analysis Settings link to bring back the graph dialog box.

[image: ../../_images/GraphingGraphed.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Integrative Genomics Viewer (IGV)

IGV is a widely used interactive tool for exploring genomic data. A web-based version is integrated into the ISB-CGC Web App,
and the IGV desktop version can also be used to access cancer data in Google Cloud Storage (GCS). For more information about IGV, please follow the links in the Acknowledgments section at the bottom of this page.

Accessing the IGV Browser from the Web App

To access IGV, first select a cohort and then go to the cohort file list page by clicking on the “File Browser” button at the top of the page.

[image: ../../_images/cohort.PNG]
On the File Browser page, click on IGV in the top menu bar.

The resulting file list can be filtered using the Build (HG19 or HG38) and the other filters listed on the left.
Click the View checkbox (far right column) for each file that you want to view in IGV. Sometimes the checkbox cannot be checked; here are some reasons why:

	Many files viewable in IGV may require that the user have dbGaP authorization to view controlled access data. If the user has been authenticated and authorized through the user details page, the user will be able to select files. Otherwise the cursor will be disabled when the user hovers over a checkbox. Open source data such as the CCLE project do not require dbGaP authorization and can be viewed by any authenticated user.

	Only a maximum of five files can be selected for viewing at a time.

To view the selected files in the IGV Browser, click on the “Launch IGV” button in the upper right of the window.

[image: ../../_images/CCLE_Files.PNG]

	NOTES:

	
	You will only be able to view controlled access sequence files if you have logged in as a registered dbGaP authorized user [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Gaining-Access-To-Controlled-Access-Data.html].

	You will need to disable your browser pop-up blocker to view files with IGV. If you see a 403 error when using the IGV viewer, the pop-up blocker is the cause of that error. Turn off the blocker and try again.

Using IGV Desktop Application to View Aligned Reads in Google Cloud Storage

You can also download and use the IGV desktop application to view aligned reads stored in BAM files in Google Cloud Storage. To do this, download [http://www.broadinstitute.org/software/igv/download] the most recent version of IGV. After launching IGV, go to the “Settings” menu to enable the Google Menu item in the application (directions [http://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html] on how to do this).

To load BAM files from ISB-CGC Google Cloud Storage, use the “File” > “Load from URL…” menu item in the IGV application, entering the path to the bam file in GCS. Paths to BAM files stored by ISB-CGC can be found using the cohorts().cloud_storage_file_paths() and samples().cloud_storage_file_paths() APIs described here [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/progAPI-v4/Programmatic-Demo.html].

	NOTE:

	
	You will only be able to view controlled access sequence files if you have logged in as a registered dbGaP authorized user [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Gaining-Access-To-Controlled-Access-Data.html].

Acknowledgments

The copyright to the Integrative Genomics Viewer is held by the Broad Institute, and the software has been
released under the MIT License. For more information about IGV please see the
IGV home page [http://www.broadinstitute.org/software/igv/home] or the
IGV github repo [https://github.com/igvteam/igv].

We are grateful to the IGV team for their assistance in integrating IGV into the ISB-CGC Web App.

Robinson J T, Thorvaldsdottir H, Winckler W, Guttman M, Lander E S, Getz G & Mesirov J P, Integrative genomics viewer,
Nature Biotechnology 29, 24-26 (2011) [http://www.nature.com/nbt/journal/v29/n1/abs/nbt.1754.html].

Thorvaldsdottir H, Robinson J T, Mesirov J P,
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration,
Briefings in Bioinformatics 14, 178-192 (2013) [http://bib.oxfordjournals.org/content/14/2/178.full?keytype=ref&%2520ijkey=qTgjFwbRBAzRZWC].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Radiology Viewer

Radiology images are viewed in an Osimis Web Viewer, a plug-in to the Orthanc Image Server [https://www.orthanc-server.com/] (Orthanc). The ISB-CGC web application uses an instance of Orthanc to manage radiology files for the purpose of viewing. Currently only DICOM formatted files from TCGA samples are available for viewing. It may be helpful to review the DICOM Model of the Real World [http://dicom.nema.org/medical/dicom/current/output/html/part03.html#chapter_7] to understand the relationship between patient DICOM studies, DICOM series and DICOM instances.

The ISB-CGC web application File Browser page [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Saved-Cohorts.html#file-browser-page] presents a table of DICOM studies associated with patients in some cohort.

[image: ../../_images/OsimisPick.png]

Viewer Components

Clicking on a study in the table opens an Osimis Web Viewer in a new tab:

[image: ../../_images/OsimisInitialDisplay.png]
All the DICOM series which comprise the selected study are shown as thumbnail images in the Series Selection Panel. Note that it can take several seconds for these thumnails to appear. By default, the thumbnails are laid out in a grid pattern. This can be changed to a list format by clicking on the List Display button [image: list] above the thumbnails. The list format displays a description of each series.

[image: ../../_images/OsimisThumbnailList.png]
Change back again to the grid pattern by clicking on the Grid Display button [image: grid].

To the lower right of each thumbnail is a small blue circle in which is displayed the number of DICOM instances which comprise the corresponding DICOM series. In addition, when your cursor hovers over a thumbnail, the viewer cycles through the instances comprising the series. (Note these low resolution images are loaded in the background and may not be available for cycling immediately after the viewer window opens.)

To view a larger rendering of a series, drag its thumbnail into the viewport. The first instance of the series is immediately displayed.

[image: ../../_images/OsimisSingleVP.png]
At the same time, at the bottom of the viewport you will notice a grid comprised of a series of rectangles corresponding to the instances in the series. The color of the tabs indicates the following:

	Black: The corresponding instance is not yet available for viewing

	Red: A reduced resolution image of the instance is available for viewing

	Green: The full resolution image of the instance is available for viewing

Typically, the viewer loads reduced resolution images for all series as quickly as possible. It loads full resolution images only when a series is dragged into the viewport.

When instance images have been loaded, you can scroll through the instances using your mouse’s thumbwheel or equvalent. As you scroll, the grid at the bottom of the screen highlights the instance currently being displayed. Clicking on a rectangle in the grid causes the corresponding instance to be displayed. The Play Controls [image: play] in the lower left corner of the main window enable you to single step forward or backward through the series, and to cycle through the series repeatedly. A frame rate slider pops up when you hover over the play button.

Viewing Functions

A set of buttons above the viewport provides a range of functions.

[image: ../../_images/OsimisViewportButtons.png]
The Layout button [image: layout] controls subdividing the viewport for the simultaneous display of one, two or four series. Drag a series into any of the subviewports to display it. Clicking in a subviewport gives it focus for mousewheel and cursor drag operations.

[image: ../../_images/OsimisMultiVP.png]
Of the remaining buttons, some are modal, changing the effect of the cursor drag function. A blue line underscores the currently selected mode. Other buttons immediately perform some operation on the subviewport that has focus.

	The Invert Color button [image: invert] immediately inverts the colors of the series in the (sub)viewport having focus.

	The Zoom button [image: zoom] is modal. When selected, dragging the cursor with mouse button depressed expands or contracts the series in the (sub)viewport having focus. Expansion/contraction is around the cursor position at which dragging begins.

	The Pan button [image: pan] is modal. When selected, dragging the cursor with mouse button depressed causes panning of the series in the (sub)viewport having focus.

	The Windowing Presets button [image: presets] operates both modally and immediately. Hovering the cursor over the button displays a list of windowing presets, one of which can be selected by clicking on it. The selection immediately sets Window Width (WW) and Window Center (WC) values for the series in the (sub)viewport having focus. The WW,WC value pair specifies a linear conversion from stored pixel values to values to be displayed. See here [http://dicom.nema.org/medical/dicom/current/output/html/part03.html#sect_C.11.2.1.2] for further information on Window Center and Window Width.

DICOM instances generally include WW,WC value pairs and these are used by default. Other WW,WC value pairs that may be appropriate for specific cases can be selected on the pop-up. The Preset #1 selection restores WW,WC to the DICOM setting.

The Windowing Presets button operates modally when clicked. In this mode, dragging the cursor left or right in a (sub)viewport changes the Window Width value applied to the series in that (sub)viewport. Dragging the cursor up or down in a (sub)viewport changes the Window Center value applied to the series in that (sub)viewport.

	The Magnifying Glass button [image: glass] is modal. Hovering the cursor over the button displays a pop-up containing two sliders that control the magnification level and size of a virtual magnifying glass. When selected, dragging the cursor with mouse button depressed opens a virtual magnifying glass that displays a magnified rendering of the underlying image in the region of the cursor.

	The Length Measurement button [image: len] is modal. When selected, the distance in physical units between two points in an instance can be measured. To perform a measurement, click the mouse button once with the cursor over some point of interest, and then again over a second point of interest. Alternatively, depress and hold the mouse button while the cursor is over the first point of interest, then release the mouse button while the cursor is over the second point of interest. A line joining the two points and its length are displayed. The line will scale if the series is zoomed in or out.

A length measurement can be moved by clicking on it and dragging. To remove a length measurement, drag it or an endpoint outside of the extent of the between instance. Note that if you have “zoomed in” on an instance, its extent may be much larger than the (sub)viewport in which it is displayed. This can make it difficult to drag the measure outside of the extent of the instance. In this case it may be necessary to “zoom out” in order to be able to drag the measure outside of the extent of the instance.

A length measurement is only visible on the instance on which it was made. There is currently no support for saving length measurements.

	The Angle Measurement button [image: ang] is modal. When selected, the angle between features in an instance can be measured. To perform a measurement, click on a point of interest in an instance. A pair of lines are displayed. Drag the end points of the lines as needed to form the angle to be measured. The angle between the lines is displayed continuously as any endpoint is dragged.

An angle measurement can be moved by clicking on one of the lines and dragging it while holding down the mouse button. To remove an angle measurement, drag it or an endpoint outside of the extent of the instance. Note that if you have “zoomed in” on an instance, its extent may be much larger than the (sub)viewport in which it is displayed. This can make it difficult to drag the measure outside of the extent of the instance. In this case it may be necessary to “zoom out” in order to be able to drag the measure outside of the extent of the instance.

An angle measurement is only visible on the instance on which it was made. There is currently no support for saving angle measurements.

	The Pixel Probe button [image: probe] is modal. When selected, clicking on a point in an instance displays a circle at the probe point, the X and Y location of the pixel relative to the top left corner of the instance, and the intensity or color of the selected pixel. The value of color instance pixels is specified in RGB coordinates. For monochrome instances, both a Stored Pixel value (SP) and a Modality Pixel value (MO) are displayed. The MO values is calculated as SP * RescaleSlope + RescaleIntercept, where RescaleSlope and RescaleIntercept are DICOM values of the instance.

A pixel probe can be moved by clicking on the probe indicator and dragging it while holding down the mouse button. To remove a pixel probe, drag it outside of the extent of the instance. Note that if you have “zoomed in” on an instance, its extent may be much larger than the (sub)viewport in which it is displayed. This can make it difficult to drag the measure outside of the extent of the instance. In this case it may be necessary to “zoom out” in order to be able to drag the measure outside of the extent of the instance.

A pixel probe is only visible on the instance on which it was made. There is currently no support for saving pixel probes.

	The Elliptical ROI button [image: eROI] is modal. When selected, click on an instance and drag either of the small circles to configure an elliptical region of interest. The area, in pixels, of the ellipse is displayed near the ellipse. On monotone instances, the mean and standard deviation of the intensities of the pixels within the ellipse are also displayed.

An ellipse can be moved by clicking on its border and dragging it while holding down the mouse button. To remove an elliptical ROI, drag the ellipse or one of its control points outside of the extent of the instance. Note that if you have “zoomed in” on an instance, its extent may be much larger than the (sub)viewport in which it is displayed. This can make it difficult to drag the ROI outside of the extent of the instance. In this case it may be necessary to “zoom out” in order to be able to drag the ROI outside of the extent of the instance.

An elliptical ROI is only visible on the instance on which it was made. There is currently no support for saving elliptical ROIs.

	The Rectangle ROI button [image: rROI] is modal. When selected, click on an instance and drag either of the small circles to configure a rectangular region of interest. The area, in pixels, of the rectangle is displayed near the rectangle. On monotone instances, the mean and standard deviation of the intensities of the pixels within the rectangle are also displayed.

A rectangle can be moved by clicking on its border and dragging it while holding down the mouse button. To remove a rectangular ROI, drag the rectange or one of its control points outside of the extent of the instance. Note that if you have “zoomed in” on an instance, its extent may be much larger than the (sub)viewport in which it is displayed. This can make it difficult to drag the ROI outside of the extent of the instance. In this case it may be necessary to “zoom out” in order to be able to drag the ROI outside of the extent of the instance.

A rectangular ROI is only visible on the instance on which it was made. There is currently no support for saving rectangular ROIs.

	The Rotate Left button [image: left] immediately performs a ninety degree left rotation of the image in the (sub)viewport that has focus.

	The Rotate Right button [image: right] immediately performs a ninety degree right rotation of the image in the (sub)viewport that has focus.

	The Flip Horizontally button [image: hflip] immediately performs a flip about the Y axis of the image in the (sub)viewport that has focus.

	The Flip Vertically button [image: vflip] immediately performs a flip about the X axis of the image in the (sub)viewport that has focus.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC BigQuery Tables

Google BigQuery (BQ) is a massively-parallel analytics engine ideal for working with tabular data. Leveraging the power of BigQuery, we have made the information scattered over tens of thousands of XML and tabular data files in legacy and active archives at the NCI-GDC much more accessible in the form of open-access BigQuery tables.

We have made the ability to explore and learn more about the ISB-CGC hosted BigQuery tables easy via an interactive BigQuery Table Search UI (https://isb-cgc.appspot.com/bq_meta_search/). Users can find tables of interest based on category, reference genome build, data type and free-form text search.

Using SQL in the Google BigQuery Console, in Juypter notebooks or in R, users with Google Cloud Platform (GCP) projects can analyze patient, biospecimen, and molecular data for many cancer programs such as TCGA, TARGET, CCLE, GTEx all in ISB-CGC’s BigQuery tables.

Note that dbGaP authorization is not required to access these tables.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

BigQuery on Google Cloud Platform

In order to use BigQuery, you must have access to a Google Cloud Platform (GCP) project. Your GCP project must be associated with a billing account in order to gain full access to all of products and services that make up the Google Cloud. Contact us at request-gcp@isb-cgc.org for more information on how to to request cloud credits.

Additionally, you will need a Google account identity (freely available with a new account or by linking to an existing email account).

When first logging into the Google Cloud Platform [http://cloud.google.com], you will be presented with this page:

[image: ../../../_images/NewSignIntoGCP.png]
You will be presented with the sign in page, prompting you to enter a Google account log in and password:

[image: ../../../_images/SignInPage.png]
Once you sign in, click on Console at the top of the screen (see arrow in image below) to access a full range of Google cloud products and services including BigQuery.

[image: ../../../_images/AfterSignInPage.png]
At the home button, scroll down to open BigQuery.

[image: ../../../_images/AccessingBigQuery.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC BigQuery Projects

ISB-CGC has two open-access Google BigQuery projects. To quickly access the ISB-CGC tables from your project on the Google BigQuery Console, you’ll need to link to these projects. This process, known as “pinning a project”, is described here.

	isb-cgc - This project has been in use since ISB-CGC’s inception.

	isb-cgc-bq - This is a new project as of July 2020. It will hold all new ISB-CGC tables, and many of the tables in the isb-cgc project will be migrated here over time.

[image: ../../_images/ISBCGC-BQ-projects.png]

isb-cgc project

The isb-cgc project contains all of the ISB-CGC BiqQuery tables created before July 2020.

Tables in isb-cgc will be retired and labeled as deprecated as we copy them over to the new project. Table descriptions will include the new table location. Eventually they will be turned into only views (with no preview ability) to ensure that existing references will continue to work correctly. Many older tables with light usage may remain in isb-cgc and not be copied over; tables with no logged recent usage may be deleted. When using the BigQuery Table Search UI [https://isb-cgc.appspot.com/bq_meta_search/] to find these retired tables, select Status of Deprecated.

Many tables will continue to have the status of Current, at least for the time being, until they are copied to the new project. In addition, there are tables with the status of Archived in the isb-cgc project and more may become archived. Archived indicates that the table contains an older version of data; a newer version of the same data exists in another table.

isb-cgc-bq project

The isb-cgc-bq project contains all new ISB-CGC BigQuery tables created after July 1, 2020 as well as tables that have been migrated from project isb-cgc. It features a more intuitive data set and table organization, as well as consistent table naming both within and across cancer research programs.

This new project is a work in progress. The migration of existing tables from the isb-cgc project will be occurring over time, and will not be all at once.
All new tables will be created in this project.

isb-cgc-bq Data Set and Table Organization

Each Program has two data sets, one containing the most current data that ISB-CGC has, and one containing versioned tables, which serves as an archive of previously released tables.

As new data releases occur, the data in the “_current” tables will be replaced with this new data. If you want the most up-to-date data, use these tables in your queries.
However, if you want to ensure that your queries create a reproducible result, use a table from the “_versioned” data set. The most current data is also in this data set; however, the name of the table will end with the release number or year and not “current”.

See below for more details.

	Data Set Name

	Data Set Contents

	Table Name Format

	Table Status

	<Program>

	Latest tables for each data type (ex. miRNA Expression, File Metadata) that ISB-CGC has, per Program

	Data Type, Reference Genome, Source, Current. Ex. TARGET.miRNAseq_hg38_gdc_current

	When using the BigQuery Table Search UI [https://isb-cgc.appspot.com/bq_meta_search/] to find these tables, select Status of Current.

	<Program>_versioned

	Previously released tables, as well as the most current table

	Data Type, Reference Genome, Source, Release Number or Year. Ex. TARGET_versioned.miRNAseq_hg38_gdc_r22. Here, the name of the most current table will end with the release number or year and not “current”.

	Previously released tables have status of Archived. The most current table has the status of Current.

See below for a snapshot of the isb-cgc-bq data set and table organization in the Google BigQuery Console.

[image: ../../_images/ISBCGC-BQ-tables.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Linking to ISB-CGC BigQuery tables

Follow the images below to link the ISB-CGC BigQuery tables in projects isb-cgc and isb-cgc-bq to your Google Cloud Project. Click on image to zoom in.

When you access BigQuery from your Google Cloud Platform Console, you will see an “Add Data” box with a “Pin a Project option”.

[image: ../../../_images/AddDataBox.png]
When you click on “Pin a Project”, you will be presented with a pop-up box that allows you to either enter a project name or to select one from a list. Choose the “Enter a Project Name” and enter in “isb-cgc” and then hit “Pin”.

[image: ../../../_images/PinAProject.png]
You will now see the isb-cgc open access BigQuery tables on the left-hand side pinned to your project. Repeat these steps for “isb-cgc-bq”.

Note

If the data sets and tables within the project don’t display immediately, refresh your screen until they do. They may take a couple of minutes to appear.

[image: ../../../_images/PinnedProject.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

BigQuery Syntax

Legacy SQL vs Standard SQL

BigQuery introduced support for
Standard SQL [https://cloud.google.com/bigquery/docs/reference/standard-sql/]
in 2016. The previous version of SQL supported by
BigQuery is now known as
Legacy SQL [https://cloud.google.com/bigquery/docs/reference/legacy-sql].

Note that when you first go to the BigQuery web UI,
Standard SQL will be activated by default and you will need to enable Legacy SQL if you want to
use Legacy SQL. For simple queries, the same syntax will work in both, except for one
important detail which is how you specify the table name. A simple Standard SQL query might look like:

SELECT *
 FROM `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
 LIMIT 1000

whereas the same query in Legacy SQL requires square brackets around the table name and a colon
between the project name and the dataset name, like this:

SELECT *
 FROM [isb-cgc:TCGA_hg38_data_v0.Somatic_Mutation_DR10]
 LIMIT 1000

(Although please note that you can use the “Preview” feature in the BigQuery web UI, at no cost, instead of doing a SELECT * which will do a full table scan!)

Query Syntax Examples

Simple Query Examples

Let’s start with a few simple examples to get some practice using BigQuery. Note that all of these examples are in “Standard SQL”. You can simply copy-and-paste any of the SQL queries on this page into the BigQuery web UI https://console.cloud.google.com/bigquery.

1. How many mutations have been observed in KRAS?

SELECT
 COUNT(DISTINCT(sample_barcode_tumor)) AS numSamples
FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
WHERE
 Hugo_Symbol="KRAS"

The following screen-shot below shows the query in the “Query Editor” box, and the results down below. Just click on the “RUN QUERY” button to run the query. Notice the green check-mark indicating that the SQL query syntax looks good.

[image: ../../../_images/SimpleSQLExample1.png]
2. What other information is available about these KRAS mutant tumours?

In addition to answering the question above, this next query also illustrates usage of the WITH construct to create an intermediate table on the fly, and then use it in a follow-up SELECT:

WITH
 t1 AS (
 SELECT
 project_short_name,
 sample_barcode_tumor,
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen
 FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
 WHERE
 Hugo_Symbol="KRAS"
 GROUP BY
 project_short_name,
 sample_barcode_tumor,
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen)
SELECT
 COUNT(*) AS n,
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen
FROM
 t1
GROUP BY
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen
ORDER BY
 n DESC

[image: ../../../_images/SimpleSQLExample2.png]
3. What are the most frequently observed mutations and how often do they occur?

WITH
 t1 AS (
 SELECT
 sample_barcode_tumor,
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen
 FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
 GROUP BY
 sample_barcode_tumor,
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen)
SELECT
 COUNT(*) AS n,
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen
FROM
 t1
GROUP BY
 Hugo_Symbol,
 Variant_Classification,
 Variant_Type,
 SIFT,
 PolyPhen
ORDER BY
 n DESC

[image: ../../../_images/SQLSimpleExample3.png]

Querying from more than one table (Joining)

Q: For bladder cancer patients that have mutations in the CDKN2A (cyclin-dependent kinase inhibitor 2A) gene, what types of mutations are they, what is their gender, vital status, and days to death - and for 3 downstream genes (MDM2 (MDM2 proto-oncogene), TP53 (tumor protein p53), CDKN1A (cyclin-dependent kinase inhibitor 1A)), what are the gene expression levels for each patient?

This question was chosen as an interesting example because the p53/Rb pathway is commonly involved in bladder cancer (see TCGA Network paper [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962515/] “Comprehensive Molecular Characterization of Urothelial Bladder Carcinoma”, Figure 4).

This is a complex question that requires information from four tables. We will build up this complex query in legacy SQL three steps. Change the query settings to legacy SQL.

Step 1

Finding the patients with bladder cancer that have mutations in the CDKN2A gene, and displaying the patient ID and
the type of mutation

SELECT
 mutation.case_barcode,
 mutation.Variant_Type
FROM
 [isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_DCC] AS mutation
WHERE
 mutation.Hugo_Symbol = 'CDKN2A'
 AND project_short_name = 'TCGA-BLCA'
GROUP BY
 mutation.case_barcode,
 mutation.Variant_Type
ORDER BY
 mutation.case_barcode

[image: ../../../_images/BigQueryExample1.png]
We now have the list of patients that have a mutation in the CDKN2A gene and the type of mutation.

Notice that we have named the “isb-cgc:TCGA_hg19_data_v0.Somatic_Mutation_DCC” table “mutation” using the AS statement. This is useful for easier reading and composing of complex queries.

Step 2

Bringing in the patient data from the ISB-CGC TCGA Clinical table so that we can see each patient’s gender, vital status and days to death.

SELECT
 case_list.mutation.case_barcode AS case_barcode,
 case_list.mutation.Variant_Type AS Variant_Type,
 clinical.gender,
 clinical.vital_status,
 clinical.days_to_death
FROM
 /* this will get the unique list of cases having the TP53 gene mutation in BRCA cases*/ (

 SELECT
 mutation.case_barcode,
 mutation.Variant_Type
 FROM
 [isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_DCC] AS mutation
 WHERE
 mutation.Hugo_Symbol = 'CDKN2A'
 AND project_short_name = 'TCGA-BLCA'
 GROUP BY
 mutation.case_barcode,
 mutation.Variant_Type
 ORDER BY
 mutation.case_barcode,
) AS case_list /* end case_list */
JOIN
 [isb-cgc.TCGA_bioclin_v0.Clinical] AS clinical
ON
 case_list.case_barcode = clinical.case_barcode

[image: ../../../_images/BigQueryExample2.png]
We now have combined information from two tables through a join. Notice in particular the join syntax,
and the fact that
for the join (inner join by default), the fields that are identiical between the mutation table and the clinical table is “case_barcode”.

Step 3

Show the gene expression levels for the 4 genes of interest, and order them by case id (Case Barcode) and gene name (HGNC_gene_symbol).

SELECT
 genex.case_barcode AS case_barcode,
 genex.sample_barcode AS sample_barcode,
 genex.aliquot_barcode AS aliquot_barcode,
 genex.HGNC_gene_symbol AS HGNC_gene_symbol,
 case_list.Variant_Type AS Variant_Type,
 genex.gene_id AS gene_id,
 genex.normalized_count AS normalized_count,
 genex.project_short_name AS project_short_name,
 clinical_info.clinical.gender AS gender,
 clinical_info.clinical.vital_status AS vital_status,
 clinical_info.clinical.days_to_death AS days_to_death
FROM (/* This will get the clinical information for the cases*/
 SELECT
 case_list.mutation.Variant_Type AS Variant_Type,
 case_list.mutation.case_barcode AS case_barcode,
 clinical.gender,
 clinical.vital_status,
 clinical.days_to_death
 FROM
 /* this will get the unique list of casess having the CDKN2A gene mutation in bladder cancer BLCA cases*/ (

 SELECT
 mutation.case_barcode,
 mutation.Variant_Type
 FROM
 [isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_DCC] AS mutation
 WHERE
 mutation.Hugo_Symbol = 'CDKN2A'
 AND project_short_name = 'TCGA-BLCA'
 GROUP BY
 mutation.case_barcode,
 mutation.Variant_Type
 ORDER BY
 mutation.case_barcode,
) AS case_list /* end case_list */
 INNER JOIN
 [isb-cgc.TCGA_bioclin_v0.Clinical] AS clinical
 ON
 case_list.case_barcode = clinical.case_barcode /* end clinical annotation */) AS clinical_info
INNER JOIN
 [isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM] AS genex
ON
 genex.case_barcode = case_list.case_barcode
WHERE
 genex.HGNC_gene_symbol IN ('MDM2',
 'TP53',
 'CDKN1A',
 'CCNE1')
ORDER BY
 case_barcode,
 HGNC_gene_symbol

[image: ../../../_images/BigQueryExample3.png]
We have now gotten all the data together in one table for further analysis.

Note that the final join surrounds the previous join top and bottom. This is common method of doing joins.

You can either download the results from a query in either CSV or JSON format, or save it for further analysis in Google BigQuery by the “Save as Table” button. As the next section describes, large queries continuing to combine multiple tables in a gene query may be limited by cost and resources, saving results as intermediate tables is a solution to these issues.

Saving Query Results to other BigQuery Tables

You can easily save query results in intermediate tables in your project, allowing others to view and use them. Details from Google on how to do that is here [https://cloud.google.com/bigquery/bigquery-web-ui]. If your query gets too complex it can take too long to run. Creating intermediate result tables can be a good approach to obtain the same result more quickly and at a lower cost.

SQL Functions

Standard SQL includes a large variety of built-in
functions and operators [https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators]
including logical and statistical aggregate functions, and mathematical functions, just to name a few.
User-defined functions [https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions] (UDFs)
are also supported and can be used to further extend the types of analyses possible in BigQuery.

Using the bq Command Line Tool

The bq command line tool is part of the
cloud SDK [https://cloud.google.com/sdk/] and can be used to interact directly
with BigQuery from the command line. The cloud SDK is easy to install and
is available for most operating systems. You can use bq to create and upload
your own tables into BigQuery (if you have your own GCP project),
and you can run queries at the command-line like this:

bq query --allow_large_results \
 --destination_table="myproj:dataset:query_output" \
 --nouse_legacy_sql \
 --nodry_run \
 "$(cat myQuery.sql)"

(where myQuery.sql is a plain-text file containing the SQL, and the destination
table is in an existing BigQuery dataset in your project).

Using BigQuery from R

BigQuery can be accessed from R using one of two powerful R packages:
bigrquery [https://bigrquery.r-dbi.org/] and
dplyr [https://cran.r-project.org/web/packages/dplyr/].
Please refer to the documentation provided with these packages for more information.

Using BigQuery from Python

BigQuery
client libraries [https://cloud.google.com/bigquery/docs/reference/libraries#client-libraries-install-python]
are available that let you interact with BigQuery from Python or other languages.
In addition, the pandas.io.gbq [https://pandas.pydata.org/pandas-docs/version/0.19/generated/pandas.io.gbq.to_gbq.html]
module provides a wrapper for BigQuery.

Getting Help

ISB-CGC has a Community Notebook Repository on GitHub with examples of using BigQuery from Python and R along with creating SQL queries.

Aside from the documentation, the best place to look for help using BigQuery and tips
and tricks with SQL is
StackOverflow [http://stackoverflow.com/]. If you tag your question with google-bigquery
your question will quickly get the attention of Google BigQuery experts. You may also find
that your question has already been asked and answered among the nearly 10,000 questions
that have already been asked about BigQuery on StackOverflow.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Pan-Cancer Atlas BigQuery Data

The Pan-Cancer Atlas BigQuery data set [https://console.cloud.google.com/bigquery?page=dataset&d=pancancer_atlas&p=isb-cgc&redirect_from_classic=true] was produced in
collaboration with the TCGA research network [https://cancergenome.nih.gov/],
the GDC [https://gdc.cancer.gov/], and the NCI [https://www.cancer.gov/]. This rich data set allows for an integrated examination of the full set of tumors characterized in the robust TCGA dataset and provides a new way to explore and analyze the processes driving cancer.

The availability of Pan-Cancer Atlas data in BigQuery enables easy integration of this resource with other public data sets in BigQuery, including other open-access datasets made available by the ISB-CGC
(see this [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Hosted-Data.html]
and that [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/Reference-Data.html]
for more details on other publicly accessible BigQuery data sets).

About Pan-Cancer Atlas Data

The Pan-Cancer Atlas BigQuery tables (accessed here [https://console.cloud.google.com/bigquery?page=dataset&d=pancancer_atlas&p=isb-cgc&redirect_from_classic=true]) mirror most of the files shared by the Pan-Cancer Atlas initiative on the GDC PanCanAtlas Publications page [https://gdc.cancer.gov/about-data/publications/pancanatlas].

The tables are generally unmodified uploads of the files in the GDC Pan-Cancer Atlas [https://gdc.cancer.gov/about-data/publications/pancanatlas]. The Filtered_* tables were annotated as appropriate with ParticipantBarcode, SampleBarcode, AliquotBarcode, SampleTypeLetterCode, SampleType and TCGA Study. Subsequently the tables were filtered using the Pan-Cancer Atlas whitelist (which is the list of TCGA barcodes included in the Pan-Cancer Atlas). Two exceptions are the (public) MC3 MAF file and the TCGA-CDR resource.

Use of the tables starting with Filtered_* is recommended.

See examples of statistical Jupyter notebooks using the Pan-Cancer Atlas data here [https://github.com/isb-cgc/Community-Notebooks/tree/master/RegulomeExplorer].

Adding the Pan-Cancer Atlas tables to your workspace

If you are new to using ISB-CGC Google BigQuery data sets, see the Quickstart Guide to learn how to obtain a Google identity and how to set up a Google Cloud Project.

To add public BigQuery data sets and tables to your “view” in the Google BigQuery Console [https://bigquery.cloud.google.com/dataset/isb-cgc:pancancer_atlas] you need to know the name of the GCP project that owns the dataset(s).
To add the publicly accessible ISB-CGC datasets (project name: isb-cgc) which includes the Pan-Cancer Atlas data set (dataset name: pancancer_atlas)
follow these steps [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/bigqueryGUI/LinkingBigQueryToIsb-cgcProject.html].

You should now be able to see and explore all of the Pan-Cancer Atlas tables and also tables of other ISB-CGC data sets.
Clicking on the blue triangle next to a dataset name will open it and show the list of tables in the data set. Clicking on a table name will open up information about the table in main panel, where you can view the Schema, Details, or a Preview of the table.

Additional projects with public BigQuery data sets which you may want to explore (repeating
the same process will add these to your BigQuery side-panel) include genomics-public-data and
google.com:biggene.

You can also search for and learn about Pan-Cancer Atlas tables through the ISB-CGC BigQuery Table Search UI [https://isb-cgc.appspot.com/bq_meta_search/]. Type ‘pancancer’ in the Search box in the upper right-hand corner to filter for them.

Pan-Cancer Atlas BiqQuery Query Example

Ready to query? Follow the steps below to run a query in the Google BigQuery Console. More details are here [https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui].

	Login [https://accounts.google.com/Login] to your Google account (Chrome [https://www.google.com/chrome/browser/desktop/index.html] is the preferred browser);

	Go to the BigQuery Console [https://console.cloud.google.com/bigquery?page=dataset&d=pancancer_atlas&p=isb-cgc&redirect_from_classic=true].

Let’s query using the MC3 somatic mutation table.

	Click on COMPOSE NEW QUERY button.

	Paste the sample query below into the text-box.

	Within a second or two you should see a green circle with a checkmark below the lower right corner of the New Query text-box. – If instead you see a red circle with an exclamation mark, click on it to see what your Syntax Error is.

	Once you do have the green circle, you can click on it to see a message like: “Valid: This query will process 76.3 MB when run.”

	To execute the query, click on RUN!

WITH
mutCounts AS (
 SELECT
 COUNT(DISTINCT(Tumor_SampleBarcode)) AS CaseCount,
 Hugo_Symbol,
 HGVSc
 FROM
 `isb-cgc.pancancer_atlas.Filtered_MC3_MAF_V5_one_per_tumor_sample`
 GROUP BY
 Hugo_Symbol,
 HGVSc
),
mutRatios AS (
 SELECT
 HGVSc,
 Hugo_Symbol,
 CaseCount,
 (CaseCount/SUM(CaseCount) OVER (PARTITION BY Hugo_Symbol)) AS ratio
 FROM
 mutCounts
)
SELECT *
FROM
 mutRatios
WHERE
 CaseCount>=10
 AND ratio>=0.2
 AND HGVSc is not null
ORDER BY
 ratio DESC

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Usage Costs

There are two basic types of usages costs associated with BigQuery: query costs and storage costs.

Query Costs

The main costs associated with using BigQuery are the query costs. In BigQuery, queries are billed according to how much data is scanned during the course of the query, and the rate is $5 per TB, although the first 1 TB is free each month. Queries can be more expensive as they become more computationally intensive.

While most of the cost is suprisingly low, it is always important to think carefully about your queries and to make them as efficient as possible. For example, if you want to derive summary information about all ~20,000 genes, you could do that with a single query that might cost a few pennies, or you might write a less-clever query that returns information only about a single gene and then programmatically loop over all genes, running that single-gene query 20,000 times. Your overall query costs using this less-clever approach, instead of being a few pennies would be several hundred dollars! This latter approach would also take significantly more time.

Storage Costs

You want to upload your own data to BigQuery or to store results of your queries as new BigQuery tables. In BigQuery, storage costs are based on the amount of data stored. For example, ISB-CGC is hosting PanCancer Atlas tables in BigQuery and is paying for the storage costs (with support from NCI). The size of each PanCancer Atlas table is less than 1.5 GB and therefore costs less than $0.25 per year to store.

The image below summarizes BigQuery’s storage costs (as of August 2019). Note, these prices are subject to change so check Google’s pricing page, https://cloud.google.com/bigquery/pricing for the most up-to-date costs.

[image: ../../_images/BigQueryCosts.png]

Additional Support

Latest information about BigQuery can be found here: https://cloud.google.com/bigquery

Some more helpful links:

Introductory Information from Google [https://cloud.google.com/bigquery/what-is-bigquery]

Main Google BigQuery documentation [https://cloud.google.com/bigquery/docs]

QuickStart Guide [https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui]

Query Syntax [https://cloud.google.com/bigquery/query-reference]

Detailed information on Google pricing [https://cloud.google.com/bigquery/pricing]

Estimating storage and query costs [https://cloud.google.com/bigquery/docs/estimate-costs]

Best practices on how to control costs [https://cloud.google.com/bigquery/docs/best-practices-costs]

Keep an eye on your GCP expenses on your Google Cloud Platform Console home page [https://console.cloud.google.com/home/dashboard]

BigQuery Mate Chrome Web Extenstion [https://chrome.google.com/webstore/detail/bigquery-mate/nepgdloeceldecnoaaegljlichnfognh?hl=en-US]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC BigQuery Table Search

The ISB-CGC BigQuery Table Search UI (https://isb-cgc.appspot.com/bq_meta_search/) is a discovery tool that allows users to explore and search for ISB-CGC hosted BigQuery tables. It can be accessed directly from the ISB-CGC homepage (https://isb-cgc.org/) by clicking on Launch in the BigQuery Table Search box or selecting BigQuery Table Search from the Data Browsers drop down menu on the main menu bar.

Note: Users are not required to have a Google Cloud Platform (GCP) project or an account to learn more about the tables hosted by ISB-CGC.

[image: ../_images/BigQueryTableSearchUI.png]
Currently, ISB-CGC hosts over 300 open access BigQuery tables. Each table has been curated to include detailed table and field descriptions as well as table labels allowing users to search for BigQuery tables of interest using a free-form text search or via available filters.

[image: ../_images/BigQueryTableSearch-UI-homepage.png]
Links to various helpful documentation pages are available, including Google BigQuery’s documentation and ISB-CGC’s BigQuery documentation and the ISB-CGC Release Notes.

[image: ../_images/BigQueryTableSearch-Documentation.png]

Filters

The search filters consist of a combination of multi-select dropdown lists, checkboxes and free-form text fields.

Selecting multiple items within a multi-select dropdown list or checkbox filter will perform a Boolean “AND” on those selections and bring back any data that match any of the selected items. For example, selecting Data Type BIOSPECIMEN and CLINICAL will display both biospecimen and clinical data.

Selecting multiple filters will perform a Boolean “OR” on those selections and bring back only data that fits all criteria. For example, selecting Data Type BIOSPECIMEN and Source of CCLE will only display CCLE biospecimen data.

Information about each filter is detailed below.

Status

We are committed to providing the most up-to-date information in our BigQuery tables but realize that at times researchers need to reference older versions of data. Each table is assigned a status based on the following criteria:

	Tables with the most up-to-date available information are given a status of current

	Tables with older versions of data are given a status of archived

	Tables that have data that is no longer supported are deprecated

By default, the Status filter is set to Current.

[image: ../_images/Status-filter.png]
Name

The Name filter is a free-form text field; the user can type all or a portion of the name into the field to perform the search. It will match against the Name column.

Note that this Name field is not the Table ID (which is used in SQL queries) but is a Friendly Name; that is, a descriptive, user-friendly name for the table.

Program

Filter the BigQuery tables by programs such as CCLE, TARGET and TCGA by using the Program filter. Click the Program box to see the dropdown list and click on a program to select it. Additional programs can be selected by clicking in the Program box again.

[image: ../_images/Program-filter.png]
Categories

The tables are grouped into four high-level categories:

	Clinical Biospecimen Data: Patient case and sample information (includes clinical tables with patient demographic data, and biospecimen data with detailed sample information)

	File Metadata: Information about raw data files including Google Cloud Storage Paths (includes tables with information about files available at the GDC, including GCS paths, creation dates, sizes, etc.)

	Genomic Reference Database: Genomic information that can be used to cross-reference against processed-omics data tables (examples include COSMIC, ClinVar, cytoBand, dbSNP, Ensembl, Ensembl2Reactome)

	Processed-omics Datasets: Processed data primarily from the GDC (i.e. raw data that has gone through GDC pipeline processing e.g. gene expression, miRNA expression, copy number, somatic mutations, methylation)

Click on one or more checkboxes to select categories.
Hovering the cursor over the information icon will display a short description of the category.

[image: ../_images/Category-filter.png]
Reference Genome Build

Filter for tables that contain data for hg19 or hg38. In a few cases, there are tables which contain information from both genome builds; for example, tables that include liftover coordinates between the reference builds.

By default, the Reference Genome filter is set to ALL.

[image: ../_images/GenomeReference-filter.png]
Source

Search through the sources of the data in our BigQuery tables by using the Source filter. Click the Source box to see the dropdown list and click on a source to select it. Additional sources can be selected by clicking in the Source box again.

[image: ../_images/Source-filter.png]
Data Type

The Data Type filter also allows you to filter for data types of interest. Like Source, multiple Data Types can be selected.

[image: ../_images/DataType-filter.png]
Experimental Strategy

The Experimental Strategy filter also allows you to filter for experimental strategies of interest. Multiple Experimental Strategies can be selected.

[image: ../_images/ExperimentalStrategy-filter.png]
Access

The Access filter has options of All, Open Access and Controlled Access. Controlled Access tables will be displayed with a Lock icon to the right of the table name. Controlled Access data cannot be previewed, but can be opened in the Google BigQuery Console, if the user has the required permissions.

[image: ../_images/Access-filter.png]
More Filters

The Show More Filters button can be used to display Dataset ID, Table ID, Table Description, Labels and Field Name filters. These are free-form text fields; the user can type all or a portion of the name into the field to perform the query. For instance, for all datasets which have “alpha” in the name, type “alpha” into the field.

These fields are most useful for users already familiar with the BigQuery tables.

Labels

Each table was tagged with labels relating to the status, program, reference genome build, source, data type, experimental strategy and access. Users can search on any of these labels on the Labels filter field. Users can find the Labels search filter under the Show More Filters option.

The labels for a table can be viewed when the blue plus sign (+) to the left of the table row is clicked. See the screen shot in the Schema section below.

Search Results

By default, each row will display the Name, Category, Source, Data Type, Status, number of rows, and Created Date of the table.

Click on the column header to sort the displayed results by that column.

Columns Selector

Columns can be added or removed from the display by using the Columns selector. For instance, the Dataset ID and Table ID are not initially displayed, but they can be added to the display.

[image: ../_images/BigQueryTableSearch-ColumnSelector.png]
Search Box

To further filter the results, use the Search box above the results, on the right-hand side. This is a free-form text field; the user can type all or a portion of the search item into the field to perform the query. This searches all fields in the table.

Export

To export the results of your search to a file in Comma Separated Values (CSV) format, click the CSV Download button.

Schema Description

For detailed table information, click on the blue plus sign (+) on the left-hand side.

[image: ../_images/BigQueryTableSearchUI-descriptions.png]
The following information is displayed:

	Full ID - This is the Project, Dataset ID, and Table ID concatenated with periods between them. The Full ID is used in SQL queries.

	Dataset ID - The BigQuery dataset of the table. A data set is a group of related tables.

	Table ID - The BiqQuery table ID.

	Description - A description of the table, which includes information such as how the data was created, its source, data type, and contents.

	Schema - The schema displays the Field Name, Type, Mode and Field Description for each field in the table.

	Labels - Labels are table metadata describing the source, data type, reference genome build, status, and access of the table data.

Copy button

Next to the Full ID is a Copy button. When the user clicks this, the Full ID is copied to the clipboard. The Full ID can then be pasted into an SQL query within the BiqQuery Query editor.

Open button

Next to the Copy button is an Open button. Clicking on this button opens the table in the BigQuery Google Cloud Platform Console. For more details, see the Table Access in Google BigQuery section below.

Table Preview

A few rows of the data in a BigQuery table can be viewed by clicking on the Preview button on the right-hand side. This feature allows the user to get a better idea of the contents and format of the data.

[image: ../_images/BigQueryTableSearch-PreviewTableOption.png]

Table Access in Google BigQuery

To access the BigQuery tables in Google Cloud Console directly from the Table Search UI, simply click on the Open button on the right-hand side.

	Note:

	
	If you have previously accessed the Google Cloud Platform and have a Google Cloud Platform project already set up, this button will automatically open up the table in the Google BigQuery Console as depicted in the image below.

	If you have never accessed Google Cloud Platform, you will be presented with a Google login page. You can use any Google ID to log in. Instructions on how to create a Google identity if you don’t already have one can be found here. You will be prompted to create a project, free of charge. Once you create the project, you will be directed to the BigQuery table you wished to open in the Google BigQuery Cloud Platform Console.

Google Cloud Platform’s free tier [https://cloud.google.com/free] allows users to access many common Google Cloud resources including BigQuery free of charge and query up to 1 TB of data per month for free.

[image: ../_images/BigQueryOpenButton.gif]
Please see the following ISB-CGC documentation pages for guidance:

	How to create a Google Cloud Platform (GCP) project

	How to link ISB-CGC BigQuery tables to your Google Cloud Platform (GCP) project

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Cancer Data File Browser

The Cancer Data File Browser [https://isb-cgc.appspot.com/cohorts/filelist/] is an ISB-CGC web interface which allows you to
explore a comprehensive selection of cancer related data files in Google Cloud Storage Buckets, such as raw sequencing, cancer nucleotide variation, pathology or radiology images.

Selecting Cancer Data File Browser from the Data Browsers drop down menu on the ISB-CGC home screen will display the Cancer Data File Browser screen.
Another way to get to this screen is to click on the Launch icon in the Cancer Data File Browser box in the Data Browsers section of the ISB-CGC home page.

You will be able to use the available filters to select a file record list. Click on the CSV button to download this list which includes barcodes and GCS locations,
without needing to log into the ISB-CGC Web Application. Except for the ability to save output results to a Google BigQuery table or to a Google Cloud Storage Bucket (GCS),
this screen has the same functionality as the one that you navigate to when selecting the File Browser button from the Saved Cohorts screen,
after signing into the Web App. To learn more about this screen, see the Cohorts File Browser documentation.

Note that the maximum number of file records that can be downloaded is 65000. You’ll need to use the filters to get the file listing results below this number.

If you decide to log into the ISB-CGC Web App (using Sign In in the upper right-hand corner), you can register a Google Cloud Project and BigQuery data set and export the file record list to a BigQuery table or a Google Cloud Storage Bucket.

[image: ../_images/DataBrowser-noSignIn.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Mitelman Database

About Mitelman Database

The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer [https://mitelmandatabase.isb-cgc.org/] is devoted to genes, chromosomes, and cancer. The Mitelman Database is supported by NCI (National Cancer Institute), the Swedish Cancer Society and the Swedish Childhood Cancer. The Mitelman Database [https://mitelmandatabase.isb-cgc.org/] is available from the ISB-CGC to access and search the data.

There are five searchers [https://mitelmandatabase.isb-cgc.org/search_menu] available to searching through the data:

	Cases Cytogenetics Searcher

	allows you to query the individual patient cases using fields such as the aberration, breakpoint, morphology, and topography

	Gene Fusions Searcher

	finds studies pertaining to gene rearrangements, in particular gene fusions, detected either as a consequence of cytogenetic aberrations or identified by sequencing

	Clinical Associations Searcher

	searches studies pertaining to clinical associations of cytogenetic aberrations and/or gene rearrangements.

	Recurrent Chromosome Aberrations Searcher

	provides a way to search for structural and numerical abnormalities that are recurrent, i.e., present in two or more cases with the same morphology and topography

	References Searcher

	queries only the references themselves, i.e., the references from the individual cases and the molecular biology and clinical associations

About Mitelman Data

The information in the Mitelman Database relates cytogenetic changes and their genomic consequences, in particular gene fusions, to tumor characteristics, based either on individual cases or associations. All the data have been manually culled from the literature by Felix Mitelman in collaboration with Bertil Johansson and Fredrik Mertens. The database is updated quarterly in January, April, July, and October. The data can be accessed on the ISB-CGC Mitelman Database [https://mitelmandatabase.isb-cgc.org/].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Cohort Builder/Data Explorer

Cohorts are a way of creating custom groupings of the samples and/or cases that you are interested in analyzing further. The Cohort Builder/Data Explorer [https://isb-cgc.appspot.com/cohorts/new_cohort/] is an ISB-CGC web interface which allows you to build cohorts based on clinical demographics and molecular filters. Compare patient cohorts with various exploration tools including IGV viewer, image viewers, and analytical visualization.

Selecting Cohort Builder/Data Explorer from the Resources drop down menu on the ISB-CGC home screen will display the Create Cohorts - Filters screen. Another way to get to this screen is to click on the Launch icon in the Cohort Builder/Data Explorer box in the Resources section of the ISB-CGC home page.

You will be able to use the available filters to create a cohort, without needing to log into the ISB-CGC Web Application. Except for the ability to save cohorts, this screen has the same functionality as the one that you navigate to when selecting the COHORTS - Create a New Cohort - Filters option after signing into the Web App. To learn more about this screen, see the Cohorts documentation.

You may want to frequently reuse a cohort in multiple analyses. Creating a “saved cohort” allows you to do this. If this is the case, click on the Login to Save New Cohort button.

[image: ../_images/CreateCohorts-noSignIn.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Pipelines and APIs

APIs

ISB-CGC provides programmatic access to cancer data (both open and controlled-access) and metadata stored on the Google Cloud Platform through a combination of ISB-CGC APIs and Google APIs. Access to ISB-CGC metadata and user-data such as patient cohort definitions is provided through the ISB-CGC API. For more details on Google Cloud APIs, please read the extensive in-depth Google Cloud APIs documentation [https://cloud.google.com/apis].

Workflow Gallery

We have compiled a collection of tutorials and sample workflows designed to introduce users to running workflows (CWL, Nextflow, Snakemake, WDL) on the Google Cloud Platform (GCP). ISB-CGC does not make the choice for users but instead enables as many workflow technologies as possible through documentation, support, and where necessary, infrastructure.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC APIs

About

There are two Application Programming Interfaces (APIs) for interacting with ISB-CGC hosted data. The first API, recommended for interacting with Big Query Tables is the Google SDK [https://cloud.google.com/bigquery/docs/reference/rest/]. ISB-CGC also provides a Swagger API [https://api-dot-isb-cgc.appspot.com/v4/swagger/], intended for interacting with our webapp and data generated through our webapp via the command line.

The ISB-CGC APIs can also be used via Python and R. We have tutorial notebooks available in our Community Notebook Repository [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowTos.html#i-m-a-novice-how-do-i].

	Python Notebook [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_ISB_CGC_APIs.ipynb]

	R Notebook [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_ISB-CGC_APIs.Rmd]

Some example use-cases that the ISB-CGC API is intended to address are:

	Obtaining detailed metadata about a particular patient or sample

	Creating (or retrieving a previously saved) cohort of patients and samples

	Retrieving a cohort’s file manifest using the cohort ID or specific filters

	Register, refresh, and unregister a specified Google Cloud Project

Note that all APIs calling user-generated data require identity credentials for use.

Authorization

Some of the APIs - such as the programs, samples, and cases - can be accessed without authorization. APIs that call on information saved in a users account, such as the cohorts and gcp APIs, necessarily require account authorization to access.

In order to access the APIs that require ISB-CGC authorization, you will need to generate a credentials file on your local machine or on your VM. To load your credentials into your command line interface:

	Clone the ISB-CGC scripts git repository to your local machine

	Run the isb_auth.py script either through the command line or within python

	If you are running the ISB-CGC APIs on a VM, upload the file generated by the above process

ISB-CGC API v4.0 UI Demo

The ISB-CGC API v4.0 UI [https://api-dot-isb-cgc.appspot.com/v4/swagger/] can be used to see details about the syntax for each call, and also provides an interface to test requests.

To generate a subset of of ISB-CGC hosted data with your desired characteristics we have provided tools to generate cohorts of patients. In addition to the the BigQuery command line users may create and share cohorts using the ISB-CGC web-app and then access them using the Swagger UI API. (TCGA samples are easily subset by using the 16-character barcode, i.e. TCGA-B9-7268-01A, while patients are identified using the 12-character prefix of the sample barcode in this case TCGA-B9-7268. Other datasets such as CCLE may use other naming conventions).

Make a Request

As mentioned before, some of the API calls will require authentication - denoted by a small lock symbol - this can be done by using the ‘Authorize’ button at the top right of the page. For a quick demonstration of the syntax of an API call one can test the POST/samples request [https://api-dot-isb-cgc.appspot.com/v4/swagger/#/default/getSampleMetadataList]. This API request has the following syntax:

{
 "barcodes": [
 <barcode 1>,
 <barcode 2>,
 ...,
 <barcode n>,
]
}

The value in the Request Body field can be edited by selecting ‘Try it out’. One can change the default sample names / barcodes or simply leave the default ones. The request can be run by selecting ‘Execute’.

Request Response

Swagger UI submits the request and shows the curl code that was submitted. The ‘Response body’ section will display the response to the request. The expected format of the response for the above request is shown below:

{
 "data": [
 {
 "samples": [
 {
 "data_details": [
 {
 <key 1>: <value 1>,
 <key 2>: <value 2>,
 ...,
 <key n>: <value n>,
 }
],
 "biospecimen_data": {
 <key 1>: <value 1>,
 <key 2>: <value 2>,
 ...,
 <key n>: <value n>,
 },
 "sample_barcode": "string",
 "case_barcode": "string"
 }
]
 }
],
 "code": 0,
 "barcodes_not_found": [
 "string"
],
 "total_found": 0,
 "notes": "string"
}

The JSON formatted response can be downloaded by selecting the ‘Download’ button. We provide API calls that allow for calls pertaining to specific samples, cases, files, cohorts, and users. The syntax for all of these is available on the ISB-CGC API v4.0 UI [https://api-dot-isb-cgc.appspot.com/v4/swagger/] webpage. For any questions or feedback on the API, please do not hesitate to contact us at feedback@isb-cgc.org.

Nuances when using the APIs

	Any special characters in the input field will cause the request to fail. e.g. spacing in input box.

	Please make sure to delete all fields not being used.

	Case barcode centric requests only pull file paths specific to case entries.

	Sample centric requests pull file paths specific to sample entries.

	Cohorts made in CloudSQL (web app) will differ in sample counts from cohorts made with BigQuery tables (APIs). Samples which correspond to pathology slide images are available in the CloudSQL tables but not currently in the BigQuery tables.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running Workflows on ISB-CGC

The ISB-CGC platform is intentionally designed to be a light-weight infrastructure above the Google Cloud Platform (GCP). As a result, our end-users have at their disposal all of the tools and technologies that the GCP has to offer. This includes full sudo acccess to Google Cloud Compute Engines and Virtual Machines. For more detailed information about GCP tools and technologies, please see their in-depth documentation page [https://cloud.google.com/docs].

We have put together some basic documentation and workflow examples for ISB-CGC users who are both new to the GCP as well as to the commonly used workflow languages in -omics research. We have chosen the workflow languages of CWL, NextFlow, Snakemake and WDL. If there are other workflow languages you are interested in, please let us know and we’ll put together some examples for them as well (email us at feedback@isb-cgc.org).

Getting Started

The links in this section: (1) help new users get familiar with the Google Cloud Platform tools and technologies (virtual machines and cloud storage) necessary to run workflows with your ISB-CGC Google Cloud Platform project, (2) provide a cheatsheet of the packages and dependencies required on the virtual machines to successfully execute the workflow examples provided below. (3) Calculating cloud costs before running large workflows is very crucial. We provide here some tips and tricks to determining costs before running workflows.

	Launching a Virtual Machine

	Creating a Google Cloud Storage Bucket

	VM Workflow Tools Installation Cheatsheet

	Workflow Cost Considerations

Example introductory bioinformatics workflows

We have put together these examples to (1) demonstrate the syntax of these workflow languages
(2) illustrate them with two commonly used bioinformatics and -omics use-cases (RNAseq and Blast)
(3) allow users to adapt these examples to their own use-cases.

	Snakemake RNA-seq

	CWL RNA-seq

	Nextflow RNA-seq

	Running Nextflow Blast

	Running CWL Blast

Example workflows accessing data in Google Cloud Storage

We demonstrate here: (1) how to use the Google Cloud Storage FUSE (GCSFuse) [https://cloud.google.com/storage/docs/gcs-fuse] tool to mount a Cloud Storage bucket to your virtual machine instance. Despite the fact that the Cloud storage buckets are object store, once mounted it behaves like a persistent disk. (2) how to use GCSFuse to mount a cloud storage bucket that contains CCLE open-access bam files to a virtual machine to run on your workflow of choice.

	Setting Up GCSFuse

	Running Nextflow pipeline on public BAM file from ISB-CGC

	Running Snakemake pipeline on public BAM file from ISB-CGC

	Running CWL pipeline on public BAM file from ISB-CGC

	Running WDL pipeline on public BAM file from ISB-CGC

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Launching a Google Cloud Virtual Machine (VM)

You can launch a virtual machine (which we will generally refer to as a VM) from the web-based Google Cloud Console or from the command line interface (CLI) using the Google Cloud SDK. We will describe both of these approaches below.

Prerequisites

	Enable the following APIs in your Google Cloud Project:

	Google Compute Engine

	Google Cloud Storage

	Check the IAM & Admin section of the Cloud Console to verify that you have “Editor” or “Owner” privileges in your Google Cloud Project, otherwise you won’t be able to create any VMs.

Via the Google Cloud Console

An instructional video on how to launch a VM can be found on the Google Cloud Platform youtube page: How to launch a VM [https://youtu.be/1XH0gLlGDdk].

Try it yourself:
On your Google Cloud Platform project console page:

	Choose the Compute Engine option from the menu icon in the upper-left corner.

	
	Choose the VM instances page.

	
	Note: the first time you visit the page, you will see two options: “Create Instance” or “Take the quickstart”.) After that, you will see a page with a list of existing (running or stopped) VMs.

	
	Select the Create Instance option, and customize your instance preferences:

	
	Name: this name is relatively arbitrary, choose something that is meaningful to you;

	Zone: choose one of the us-east or us-central zones;

	Machine type: you can specify a VM with anywhere between 1 and 16 cores (aka vCPUs), and with up to 100 GB of RAM (you can try the “Customize” view if you prefer a more graphical approach); note that as you change the specifications of the VM, the estimated cost shown on this page will update;

	Boot disk: the default boot disk and OS will be shown, but you can change this as you wish: the “Change” button will result in a flyout panel where you can choose from a variety of Preconfigured images (Debian, CentOS, Ubuntu, RedHat, etc) or previously created images or disks; you can also choose between “standard disks” and faster (and more expensive) solid-state drives (SSDs), and specify the size of the disk (up to 64TB).

	
	Once you have all of the options set, you can click on the blue Create button.

	
	Creating the VM should take less than a minute, after which you will see it listed on the “VM instances” page, with the Name, Zone, Disk, Network, and External IP address shown. There is also an SSH button that you can use directly from the Console.

Launch a VM using the Command Line Interface (CLI)

The command line argument to create a new VM instance is gcloud compute instances create. The complete
documentation can be found
online [https://cloud.google.com/sdk/gcloud/reference/compute/instances/create]
or by typing gcloud compute instances create –help on the command line.

Here is a very simple command to create a VM:

gcloud compute instances create my-instance –machine-type g1-small

Some defaults can be obtained (if available) from your configuration settings. For example, if you don’t want
to have to specify the zone of the instances, you can set the compute/zone property, for example:

gcloud config set compute/zone us-central1-a

A list of zones can be fetched by running:

gcloud compute zones list

Accessing your new VM

Whether you have created your VM from the Console or using the CLI, you can find it and
ssh to it, again using either the Console or the CLI:

	From the Console, go to Compute Engine > VM instances, and then click on the SSH button on the far-right of the row describing the specific VM you would like to connect to.

	Using the CLI, simply use the command gcloud compute ssh followed by the instance name.

Shutting down your VM

Remember that as long as your VM is running, whether or not you are actually doing anything with it,
charges will be incurred. It is therefore a good idea to get in the habit of shutting down VMs as
soon as you are finished with your work. They can easily be restarted an hour, day, or week later.
Note that resources that are attached to a stopped VM (such as persistent disks) will, however
continue to incur charges. Compared to the cost of the VM, though, the cost of a persistent disk
is typically negligible: a 50 GB standard persistent disk only costs $2 per month, and 1 TB costs $40.

If you know that you won’t ever need this specific VM again, or you don’t want to continue paying for
the persistent disk, or you would rather start a fresh VM with an updated OS next time, then you can go
ahead and delete the VM rather than just stopping it.

From the command-line, the relevant commands are gcloud compute instances stop and
gcloud compute instances delete.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Creating a Google Cloud Storage Bucket

Why should you create Google Cloud Storage buckets (hereto referred to as buckets) when your virtual machine can also store your data? Because Google Cloud Storage buckets are much less expensive to maintain compared to VM disks. Please see this link [https://cloud.google.com/storage/pricing] for the most up-to-date pricing on the different storage options offered by the Google Cloud Platform.

Via the Google Cloud Console

Instructional video provided by the Google Cloud Platform:
How to Create a Google Cloud Storage Bucket through the Console [https://youtu.be/TfOO-fSzTNA].

Try it out yourself:

	Click on Cloud Storage browser on the left of the page

	Click Create a bucket

	Give the bucket a unique name, with all lowercase letters and no spaces.

	Select region, location and click Create

Via gsutil commandline tool

Use the gsutil mb command:

$gsutil mb gs://[BUCKET_NAME]/

Where:

	[BUCKET_NAME] is the name you want to give your bucket, subject to naming requirements. For example, my-bucket.

You can set the following optional flags to have greater control over the creation of your bucket:

	p: Specify the project with which your bucket will be associated. For example, my-project.

	c: Specify the default storage class (https://cloud.google.com/storage/docs/storage-classes)) of your bucket. For example, NEARLINE.

	l: Specify the location (https://cloud.google.com/storage/docs/locations of your bucket. For example, US-EAST1.

	b: Enable uniform bucket-level access (https://cloud.google.com/storage/docs/uniform-bucket-level-access) for your bucket.

Accessing data in your bucket by gsutil

my-cloud-bucket
|_______myFile.txt
|_______myOtherFile.txt

To list what in your bucket:

$gsutil ls gs://my-cloud-bucket/

output:

gs://my-cloud-bucket/myFile.txt
gs://my-cloud-bucket/myOtherFile.txt

Accessing data in your bucket via GCSFuse

If you have access to a bucket and want to “clone” that bucket to your VM instance, gcsfuse can mount that bucket/or a sub-directory of that bucket to your VM directory of your choice.

Pros:

	Data can be accessed without using gsutil or gs:// address, i.e your bucket data become local to your VM instance

Cons:

	Since gcsfuse will actually download the data to your directory, make sure your VM instance has enough available storage to clone data from the bucket

	Consumes available storage space

	May slow down your performance

(1) How-to instructional video [https://www.youtube.com/watch?v=mE6dLYOf8BA]

(2) Step-by-Step installation guide [https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/docs/installing.md]

GCSFuse Quicktips

Mount a bucket to your folder:

$gcsfuse bucketname myfolder/to/mount

Mount a subdirectory from your bucket to your VM folder:

$gcsfuse --only-dir subdirectory bucketName myFolder/to/mount

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

VM Workflow Tools Installation Cheat Sheet

When working with a new Virtual Machine (VM), more often than not installing software, packages and dependencies is required, and the process can be cumbersome. This cheat sheet was created with running workflows on Google Cloud VM in mind. It contains quick shortcuts to install common software, dependencies, and quick fixes.

NEXTFLOW

Install:

$ export NXF_VER=20.01.0
$ export NXF_MODE=google
$ curl https://get.nextflow.io | bash

SNAKEMAKE

Step 1 install Miniconda:

Installer [https://docs.conda.io/en/latest/miniconda.html#linux-installers]
| Instruction [https://conda.io/projects/conda/en/latest/user-guide/install/index.html]

Note

After “conda init fish” step restarting your VM command line is needed.
In addition, if the conda command is not found, try: $export PATH=./miniconda3/bin/:$PATH

Step 2 install Snakemake:

Instruction [https://snakemake.readthedocs.io/en/stable/getting_started/installation.html#conda-install]

Installer:

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Snakemake environment:

Create and activate Environment for Snakemake from a file (yml/yaml):

$ conda env create --name <yourEnvironmentName> --file environment.yaml
$ source activate <yourEnvironmentName>

Updating current environment

$ conda env update -f environment.yml

Note

For more conda commands, visit: Conda Cheat sheet [https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf].

WDL

Installers [https://github.com/broadinstitute/cromwell/releases] for Cromwell and Womtool

$ wget https://github.com/broadinstitute/cromwell/releases/download/52/cromwell-52.jar
$ wget https://github.com/broadinstitute/cromwell/releases/download/52/womtool-52.jar

CWL

$ sudo apt-get install python-pip
$ pip install --upgrade pip
$ pip install cwltool

Common dependencies

Java

$ sudo apt install default-jre

Python

$ sudo apt-get update
$ sudo apt-get install python3.6

Pip install/Python-pip

$ sudo apt-get install python-pip
$ pip install --upgrade pip

DOCKER

Install:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$ sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
$ sudo apt-get update
$ apt-cache policy docker-ce
$ sudo apt-get install -y docker-ce

Check docker status:

$ sudo systemctl status docker

Check docker installation:

$ docker run hello-world

If docker doesn’t run, try the fix right below or read more here [https://linoxide.com/linux-how-to/use-docker-without-sudo-ubuntu/].

Permission denied

error prompt:

docker: Got permission denied while trying to connect to the Docker daemon socket at unix

Try:

$ sudo groupadd docker
$ sudo usermod -aG docker ${USER}
close VM and reopen

DOCKER Daemon not running:

$ sudo service docker start
$ sudo dockerd

Graphviz

$ sudo apt-get install graphviz

Git/github

$ sudo apt install git

Wget

$ sudo apt-get install wget

Subversion

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

GCSFUSE

Mount a bucket to your folder:

$ gcsfuse bucketname myfolder/to/mount

Mount a subdirectory from your bucket to your VM folder:

$ gcsfuse --only-dir subdirectory bucketName myFolder/to/mount

Set PATH for executable file

$ export PATH=~/where/you/install/theProgram:$PATH

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Workflow Costs

Before running your workflow, it’s important to consider the factors involved in the cost. Below are some ways to watch out for costs when working on the Google Cloud.

	Google Compute Engine charges are based on a pricing sheet [https://cloud.google.com/compute/vm-instance-pricing].

	Check this periodically as pricing is routinely updated.

	The pricing is totaled up from:

	Disk size

	Machine type memory

	Network Usage

	Price depends on the configuration

	Google provides an on site preview of costs and discounts per machine type:

	Google Platform Pricing Calculator [https://cloud.google.com/products/calculator]

	For more cost-saving tips and tricks, check out our Best Practices documentation.

	If you’re looking to run large jobs, contact us (feedback@isb-cgc.org) and we’ll help optimize your cloud costs.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Your First Workflow on Google Cloud Virtual Machine (Snakemake RNA-seq)

This Snakemake RNA-seq [https://www.technologynetworks.com/genomics/articles/rna-seq-basics-applications-and-protocol-299461#:~:text=RNA%2Dseq%20(RNA%2Dsequencing,patterns%20encoded%20within%20our%20RNA.] workflow maps read-pairs to a reference genome and quantify the produce to produce a transcript. Snakemake [https://snakemake.readthedocs.io/en/stable/] workflows are Python based, extended by declarative code which defines rules. The rules indicate how the output files are created from the input files.

Requirements:

	Anaconda/Miniconda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html]

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/Snakemake-RNAseq

Starting folder:

Snakemake-RNAseq
|_________data
| |_________ggal_gut_1.fq
| |_________ggal_gut_2.fq
| |_________ggal.gtf
| |_________reference.fa
|_________step1
| |_________indexing.smk
| |_________Snakefile
|_________step2
| |_________therest.smk
| |_________Snakefile
|_________environment.yml

Setting up your Conda environment using the environment.yml file

The file environment.yml contains a list of all the softwares required to run this tutorial

$ cd Snakemake-RNAseq
$ conda env create --name tutorial --file environment.yml
$ conda activate tutorial

Note

Syntax: conda env create –name <yourEnvironmentName> –file environment.yml. For this tutorial <yourEnvironmentName> = tutorial

It should look like this:

[image: ../../_images/YourFirstWorkflow_1.png]
Congratulations! You are now ready to run your first workflow using snakemake.

Step 1: Creating Index files from reference genome using hisat2-build

From folder rnaseq-snake:

$ cd step1

Let’s take a look at the 2 files in this folder: Snakefile and indexing.smk.

|_________step1
 |_________indexing.smk
 |_________Snakefile

Snakefile is the default name for snakemake’s script. The “snakemake”
command will automatically find a file name Snakefile and execute it; indexing.smk is a helper file that will be called within the Snakefile.

Let’s run it by using:

$ snakemake

Snakemake will run and use hisat2 to build index files from file rnaseq-snake/data/reference.fa. All the index files will be moved to rnaseq-snake/step1/reference.

Let’s take a quick look at the code:

#Snakefile
rule targets:
 input:
 "index.done"
include: "indexing.smk"

The first rule’s input of a Snakefile (rule targets) will determine what’s the output of that workflow. In this case, index.done is the target file that snakemake will look for. Include: “indexing.smk” will call the following helper script:

Note

Only the very first Snakefile rule’s input behaves like this; other input will be the actual inputs of your workflow.

#Indexing.smk
rule indexing:
 input:
 "../data/reference.fa"
 output:
 touch('index.done')
 shell:
 """
 mkdir reference
 hisat2-build {input} index
 mv index.* reference/
 """

In Indexing.smk file we have an actual input “../data/reference.fa” and the output section tells snakemake to create an empty file “index.done”, which is the file that the first rule will check to make sure that this helper script actually run. Then the shell script is executed as follows: a folder called reference got created, then Hisat2 created index files from the fasta file, and then all the index files got moved to the reference folder.

After Step 1:

rnaseq-snakemake
|_________data
| |_________ggal_gut_1.fq
| |_________ggal_gut_2.fq
| |_________ggal.gtf
| |_________reference.fa
|_________step1
| |_________indexing.smk
| |_________Snakefile
| |_________[index.done]
| |_________[reference]
| |_________[index.1.ht2]
| | [(2-7)]
| |_________[index.8.ht2]
|_________step2
| |_________therest.smk
| |_________Snakefile
|_________environment.yml

Step 2: Creating the BAM file and the Transcript from reads and index files

Step 2 is similar to Step 1.

From folder step1, to run step 2:

$ cd ..
$ cd step2
$ snakemake

After Step 2:

rnaseq-snakemake
|_________data
| |_________ggal_gut_1.fq
| |_________ggal_gut_2.fq
| |_________ggal.gtf
| |_________reference.fa
|_________step1
| |_________indexing.smk
| |_________Snakefile
| |_________index.done
| |_________reference
| |_________index.1.ht2
| | (2-7)
| |_________index.8.ht2
|_________step2
| |_________therest.smk
| |_________Snakefile
| |_________[ggal_gut.cutadapt.sam]
| |_________[e2t.ctab]
| |_________[i_data.ctab]
| |_________[i2t.ctab]
| |_________[t_data.ctab]
| |_________[e_data.ctab]
| |_________[ggal_gut.tsv]
| |_________[ggal_gut_ref.gtf]
| |_________[ggal_gut_transcript.gtf]
| |_________[ggal_gut.cutadapt.bam]
| |_________[ggal_gut.cutadapt.bam.bai]
|_________environment.yml

The script will call hisat2 [http://daehwankimlab.github.io/hisat2/] , samtools [http://www.htslib.org/], and stringtie [https://ccb.jhu.edu/software/stringtie/] to do the work.
The same principle as step 1 applies to this step, the Snakefile will contains the final outputs, and call to the helper script therest.smk. ggal_gut.cutadapt.sam file will contains the sequence alignment data produced by mapping reads to the reference genome. ggal_gut.cutadapt.bam file will contain the compressed binary data from Sam. More description on ctab files, gtf outputs, and tsv of stringtie can be found here [http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual]. The ggal_gut_transcript.gtf contains details of the transcripts that StringTie assembles from RNA-Seq data, while ggal_gut.tsv contains gene abundances.

Creating a visualization for your workflow

In the step2 folder:

$ snakemake --dag | dot -Tsvg > visual.svg

A file named visual.svg will be created in the same folder; it can be downloaded and open with any web browser. It should look like this:

[image: ../../_images/YourFirstWorkflow_2.jpg]

About environment.yml

channels:
 - conda-forge
 - bioconda
 - main
 - r
dependencies:
 #snakemake and python will be included
 - snakemake-minimal =5.10.0
 - python =3.7.6
 #all other bioinformatics tools
 - samtools =1.9
 - bowtie2 =2.3.5.1
 - hisat2 =2.2.0
 - stringtie =2.1.2
 - gffread =0.11.7
 #visualization tool
 - graphviz =2.42.3e

To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/RNAseq].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running CWL RNA-seq

This Common Workflow Language (CWL [https://www.commonwl.org/]) RNA-seq [https://www.technologynetworks.com/genomics/articles/rna-seq-basics-applications-and-protocol-299461#:~:text=RNA%2Dseq%20(RNA%2Dsequencing,patterns%20encoded%20within%20our%20RNA.] workflow maps read-pairs to a reference genome and produces a transcript.

CWL enables the user to connect command line tools to create workflows; it is a specification and is therefore portable across platforms that support CWL.

Requirements:

	CWLtool

	Docker

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/CWL-RNAseq

To install Docker and CWL, see our VM Workflow Tools Installation Cheatsheet for instructions.

Starting folder CWL-RNAseq should look like this:

.
└── CWL-RNAseq
 ├── create_bam.cwl
 ├── create_transcript.cwl
 ├── CWL-RNAseq.cwl
 ├── CWL-RNAseq.yml
 ├── data
 │ ├── sample_1.fq
 │ ├── sample_2.fq
 │ ├── sample.fa
 │ └── sample.gtf
 ├── hisat2_align.cwl
 └── index_build.cwl

An overview of the main CWL files:

	CWL-RNAseq.cwl is the main cwl file that connects all other cwl tools and yml file together.

	CWL-RNAseq.yml is the file that contains all the inputs that are necessary to run the pipeline.

	index_build.cwl builds index files from a Fasta file, using Hisat2-build.

	hisat2_align.cwl builds a sam file from forward and reverse reads, and the indices built from previous step, using Hisat2.

	create_bam.cwl builds a bam file from the newly built sam file, using Samtools.

	create_transcript.cwl creates transcript from the bam file from previous step, using Stringtie.

Let’s take a look at some example of the main file CWL-RNAseq.cwl:
The first block describe what is required to run this workflow, more information on this CWL requirements can be found here [https://www.commonwl.org/v1.0/CommandLineTool.html]. Docker usage is also described in the hints section.

#!/usr/bin/env cwl-runner

cwlVersion: v1.0
class: Workflow
requirements:
 SubworkflowFeatureRequirement: {}
 StepInputExpressionRequirement: {}
 InlineJavascriptRequirement: {}
 ShellCommandRequirement: {}

hints:
 DockerRequirement:
 dockerPull: kathrinklee/rna-seq-pipeline-hisat2

Below are the inputs, outputs, and steps blocks that come after. In step1 the script index_build.cwl will be called, and its inputs (in) are taken from inputs section, the output (out) will be caught by the outputs (step1/ht and step1/log in this case). This declaration is important as it will decide which outputs to keep at the end of the step.

inputs:
 fasta_file: File
 out_name: string

outputs:
 index_files:
 type: Directory
 outputSource: step1/ht
 index_log:
 type: File
 outputSource: step1/log

steps:
 step1:
 run: index_build.cwl
 in:
 fasta_file: fasta_file
 out_name: out_name
 out:
 [ht, log]

Let’s run it by using:

$ cwltool CWL-RNAseq.cwl CWL-RNAseq.yml

If you receive this error: “docker: Got permission denied while trying to connect to the Docker daemon socket at unix”

Try:

$ sudo groupadd docker
$ sudo usermod -aG docker ${USER}
close and reopen VM then run the script again

Let’s take a look at the folder after cwltool finishes:

.
└── CWL-RNAseq
 ├── create_bam.cwl
 ├── create_transcript.cwl
 ├── CWL-RNAseq.cwl
 ├── CWL-RNAseq.yml
 ├── data
 │ ├── sample_1.fq
 │ ├── sample_2.fq
 │ ├── sample.fa
 │ └── sample.gtf
 ├── [final_ref.gtf]
 ├── [final_transcript.gtf]
 ├── [final.tsv]
 ├── hisat2_align.cwl
 ├── [hisat2_align_out]
 │ ├── [hisat2_align_out.log]
 │ └── [sample.sam]
 ├── [hisat2_build.log]
 ├── index_build.cwl
 ├── [sample]
 │ ├── [index.1.ht2]
 │ ├── [index.2.ht2]
 │ ├── [index.3.ht2]
 │ ├── [index.4.ht2]
 │ ├── [index.5.ht2]
 │ ├── [index.6.ht2]
 │ ├── [index.7.ht2]
 │ └── [index.8.ht2]
 └── [sample.bam]

The script will call hisat2 [http://daehwankimlab.github.io/hisat2/] , samtools [http://www.htslib.org/], and stringtie [https://ccb.jhu.edu/software/stringtie/] to do the work. sample.sam file will contains the sequence alignment data produced by mapping reads to the reference genome, sample.bam file will contains the compressed binary data from Sam. More description on gtf outputs, and tsv of stringtie can be found here [http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual]. The final_transcript.gtf contains details of the transcripts that StringTie assembles from RNA-Seq data, while final.tsv contains gene abundances.

To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/RNAseq].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running Nextflow RNA-seq

This Nextflow RNA-seq [https://www.technologynetworks.com/genomics/articles/rna-seq-basics-applications-and-protocol-299461#:~:text=RNA%2Dseq%20(RNA%2Dsequencing,patterns%20encoded%20within%20our%20RNA.] workflow maps read-pairs to a reference genome and produces a transcript.

By using software containers, Nextflow [https://www.nextflow.io] enables scalable and reproducible scientific workflows. Pipelines can be written in the most common scripting languages.

Requirements:

	Docker

	Java (required to install Nextflow)

	Nextflow

	Graphviz

To install Docker, Graphviz and Nextflow, see our VM Workflow Tools Installation Cheatsheet for instructions.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/Nextflow-RNAseq

Running Nextflow

You should have a Nextflow-RNAseq directory :

Nextflow-RNAseq
 ├── data
 │ ├── sample_1.fq
 │ ├── sample_2.fq
 │ ├── sample.fa
 │ └── sample.gtf
 ├── main.nf
 └── nextflow.config

The file main.nf contains all the code to execute the workflow, and nextflow.config provides the name of the Docker image that contains all of the tools for this run.

Let’s take a look at the contain of the file main.nf.
The first block contains all the parameters (denoted by “params”) that are required to input into the workflow.

#!/usr/bin/env nextflow

params.outdir = "$baseDir/results"
params.indexDir = "$baseDir/reference"
params.refGenome = "$baseDir/data/sample.fa"
params.forRead = "$baseDir/data/sample_1.fq"
params.revRead = "$baseDir/data/sample_2.fq"
params.gtfFile = "$baseDir/data/sample.gtf"

The process block contain 3 basic parts: input, output, and command (contained in the pairs of quotation/quotations mark “”” some commands “””). the variable refGenome with type path is created to hold the value of params.refGenome.
In the command (“””) block, the hisat2 build command will be carried out, the previously created variable refGenome is denoted as ${refGenome}. The name of the final output files from hisat2 build in this case will follow the pattern index.#.ht2.
In the output section, in order to catch the outputs of hisat2, the wildcard ‘index*’ was used, and those outputs will become a list that assigned to the channel index_ch* variable. the index_ch* channel can be used for the downstream processes. The other 3 processes have the same syntax.

	::

	
	process buildIndex {

	publishDir params.indexDir, mode: ‘copy’
echo true
input:
path refGenome from params.refGenome

output:
path ‘index*’ into index_ch

“””
echo “Building Indices”
hisat2-build ${refGenome} index
“””

}

To run:

#Assume the executable file "nextflow" is installed in the same directory with the folder you downloaded "Nextflow-RNAseq".
$./nextflow run Nextflow-RNAseq

After the workflow finishes running, the folder should look like this:

Nextflow-RNAseq
 ├── data
 │ ├── sample_1.fq
 │ ├── sample_2.fq
 │ ├── sample.fa
 │ └── sample.gtf
 ├── main.nf
 ├── nextflow.config
 ├── [reference]
 │ ├── [index.1.ht2]
 │ ├── [index.2.ht2]
 │ ├── [index.3.ht2]
 │ ├── [index.4.ht2]
 │ ├── [index.5.ht2]
 │ ├── [index.6.ht2]
 │ ├── [index.7.ht2]
 │ └── [index.8.ht2]
 └── [results]
 ├── [final_ref.gtf]
 ├── [final_transcript.gtf]
 ├── [sample.bam]
 ├── [sample.sam]
 └── [sample.tsv]

The script will call hisat2 [http://daehwankimlab.github.io/hisat2/] , samtools [http://www.htslib.org/], and stringtie [https://ccb.jhu.edu/software/stringtie/] to do the work. sample.sam file will contains the sequence alignment data produced by mapping reads to the reference genome, sample.bam file will contains the compressed binary data from Sam. More description on gtf outputs, and tsv of stringtie can be found here [http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual]. The final_transcript.gtf contains details of the transcripts that StringTie assembles from RNA-Seq data, while final.tsv contains gene abundances.

Running Nextflow with visualization

Use the following command:

#Assume the executable file "nextflow" is installed in the same directory with the folder you downloaded "Nextflow-RNAseq".
$./nextflow run Nextflow-RNAseq -with-dag flowchart.png

An image file with the name flowchart.png will be available to download.
It should look like this:

[image: ../../_images/Nextflow-RNAseq.png]
To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/RNAseq].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running NEXTFLOW Blast

This workflow extracts contigs of interest from a mixed library of DNA; it uses Blastn and Python.

Requirements:

	Docker

	Java (required to install Nextflow)

	Python (to run the scripts)

	Nextflow

	Graphviz

To install Docker, Java, Python, Graphviz and Nextflow, see our VM Workflow Tools Installation Cheatsheet for instructions.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/Nextflow-Blast

Rationale

The input of this workflow (sample.fa) is produced by genome assembly software. It contains contigs from multiple organisms (eukaryote, prokaryotes) because of the way the sample was prepared and sequenced.
In this example, we are interested in the prokaryote genome only, and will separate their contigs from the eukaryote ones. In order to do that, Blastn will do sequence alignment between the contigs and the prepared blast database (files in the folder db).
The output of Blastn will be a table, which maps the contig header to the appropriate species. Here, we also demonstrate how to incorporate the use of python helper scripts in our pipeline to extract the prokaryotes’ headers (scripts/Extract_Headers.py), contigs (scripts/Extract_Contigs.py), and nucleotide count (scripts/Count_Nucleotides.py) from the original Fasta file using the Blastn result.
The final output of the workflow will be 3 text files: extracted_contigs.txt, Headers.txt, NucleoCount.txt.

Running Nextflow

You should have a Nextflow-Blast directory :

Nextflow-Blast
 ├── data
 │ └── sample.fa
 ├── db
 │ ├── SampleDB.nhr
 │ ├── SampleDB.nin
 │ └── SampleDB.nsq
 ├── main.nf
 ├── nextflow.config
 └── scripts
 ├── Count_Nucleotides.py
 ├── Extract_Contigs.py
 └── Extract_Headers.py

The file main.nf contains all the code necessary to execute the workflow, and nextflow.config provides the name of docker image that contains all the tools for this run.
To run:

#Assume the executable file "nextflow" is installed in the same directory with the folder you download "Nextflow-Blast"
$./nextflow run Nextflow-Blast

Once complete, the folder should look like this:

Nextflow-Blast
 ├── data
 │ └── sample.fa
 ├── db
 │ ├── SampleDB.nhr
 │ ├── SampleDB.nin
 │ └── SampleDB.nsq
 ├── main.nf
 ├── nextflow.config
 ├── [results]
 │ ├── [Blastn.out]
 │ ├── [extracted_contigs.txt]
 │ ├── [Headers.txt]
 │ └── [NucleoCount.txt]
 └── scripts
 ├── Count_Nucleotides.py
 ├── Extract_Contigs.py
 └── Extract_Headers.py

Running Nextflow with the Visualization Option

Use the following command:

#Assume the executable file "nextflow" is installed in the same directory with the folder you download "Nextflow-Blast"
$./nextflow run Nextflow-Blast -with-dag flowchart.png

An image file with the name flowchart.png will be available to download.
It should look like this:

[image: ../../_images/Nextflow-Blast.png]
To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/Blast].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running CWL Blast

This workflow extracts contigs of interest from a mixed library of DNA; it uses Blastn and Python.

Requirements:

	CWLtool

	Docker

	Python (to run the scripts)

To install Docker, Python, and CWL, see our VM Workflow Tools Installation Cheatsheet for instructions.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/CWL-Blast

Rationale

The input of this workflow (sample.fa) is produced by genome assembly software. It contains contigs from multiple organisms (eukaryotes, prokaryotes) because of the way the sample was prepared and sequenced.
In this example, we are interested in the prokaryotic genomes only, and will separate their contigs from the eukaryotic ones. In order to do that, Blastn will do sequence alignment between the contigs and the prepared blast database (files in the folder db).
The output of Blastn will be a table, which maps the contig headers to the appropriate species. Then we demonstrate how to incorporate the use of python helper scripts in our pipeline to extract the prokaryotes’ headers (scripts/Extract_Headers.py), contigs (scripts/Extract_Contigs.py), and nucleotide count (scripts/Count_Nucleotides.py) from the original Fasta file using the Blastn result.
The final output of the workflow will be 3 text files: extracted_contigs.txt, Headers.txt, NucleoCount.txt.

Running CWL

You should have a CWL-Blast directory :

CWL-Blast
├── blast.cwl
├── count_nucleotides.cwl
├── CWL-Blast.cwl
├── CWL-Blast.yml
├── data
│ └── sample.fa
├── db
│ ├── SampleDB.nhr
│ ├── SampleDB.nin
│ └── SampleDB.nsq
├── extract_contigs.cwl
├── extract_headers.cwl
└── scripts
 ├── Count_Nucleotides.py
 ├── Extract_Contigs.py
 └── Extract_Headers.py

Let’s run it by using:

$ cd CWL-Blast
$ cwltool CWL-Blast.cwl CWL-Blast.yml

Let’s take a look at the folder after cwltool finishes:

CWL-Blast
 ├── blast.cwl
 ├── Blastn.out
 ├── count_nucleotides.cwl
 ├── CWL-Blast.cwl
 ├── CWL-Blast.yml
 ├── data
 │ └── sample.fa
 ├── db
 │ ├── SampleDB.nhr
 │ ├── SampleDB.nin
 │ └── SampleDB.nsq
 ├── extract_contigs.cwl
 ├── extracted_contigs.txt
 ├── extract_headers.cwl
 ├── Headers.txt
 ├── NucleoCount.txt
 └── scripts
 ├── Count_Nucleotides.py
 ├── Extract_Contigs.py
 └── Extract_Headers.py

Full resulting files from running this workflow are deposited in the github repo here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/Blast].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Setting up GCSFuse

When you are running workflow on a virtual machine (VM), often your input files are stored in Google Cloud Storage buckets. One way to access them is to mount the Cloud Storage buckets as file systems on your VM. Google Cloud Storage FUSE (GCSFuse) allows you to mount Cloud Storage buckets to easily read and write from your VM to your Cloud Storage buckets. More detailed information can be found on the Google Cloud documentation page [https://cloud.google.com/storage/docs/gcs-fuse].

How-to video [https://www.youtube.com/watch?v=mE6dLYOf8BA] | Installing Page [https://github.com/GoogleCloudPlatform/gcsfuse/blob/master/docs/installing.md]

Step 1: create a Virtual Machine (VM) instance big enough to hold your data

This guide recommends your VM be created with: Ubuntu 16.04 LTS, and with the Allow full access to all Cloud APIs option.

Note

It’s very important to have a VM big enough, or your gcsfuse will not mount properly.

Step 2: installing gcsfuse

The following commands can be used to install gcsfuse:

$ sudo -i
$ cd /
$ cd opt
$ export GCSFUSE_REPO=gcsfuse-`lsb_release -c -s`
$ echo "deb http://packages.cloud.google.com/apt $GCSFUSE_REPO main" | sudo tee /etc/apt/sources.list.d/gcsfuse.list
$ curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install gcsfuse
Close the VM console and reopen

Step 3: mounting/ linking the target bucket to your VM directory

Making a directory to hold your bucket:

at your home directory and not in opt
in this tutorial yourNewDirectory will be testGcsfuse

$ mkdir <yourNewDirectory>

Note

To access restricted data with your Google credential, before going further, use this command: $gcloud auth application-default login

Mount a bucket to your folder:

$ gcsfuse <bucketname> <myfolder/to/mount>

Example: gs://gdc-ccle-open/ is the bucket you want to mount to your VM

$ gcsfuse gdc-ccle-open testGcsfuse

Mount a subdirectory from your bucket to your VM folder:

$ gcsfuse --only-dir <subdirectory> <bucketName> <myFolder/to/mount>

Example: you have a bam file with the address gs://gdc-ccle-open/692a845c-7957-41f2-b679-5434c69ba25b/G27328.Calu-6.1.bam,
and you only need to mount the directory that holds that bam file:

$ gcsfuse --only-dir 692a845c-7957-41f2-b679-5434c69ba25b gdc-ccle-open testGcsfuse

You should see something like this:

[image: ../../_images/WorkflowWithGCSFUSE.jpg]
[image: ../../_images/WorkflowWithGCSFUSE_2.jpg]

Step 4: running your workflow with a local VM directory

Write your workflow with the input pointing to that directory, as follows:

[image: ../../_images/WorkflowWithGCSFUSE_1.jpg]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running Nextflow pipeline on public BAM file from ISB-CGC

This Nextflow workflow gathers GC content from a BAM file (or a list of BAM files) to a text file.
By using software containers, Nextflow [https://www.nextflow.io] enables scalable and reproducible scientific workflows. Pipelines can be written in the most common scripting languages.

Requirements:

	Docker

	Java (required to install Nextflow)

	Gcsfuse

	Nextflow

	A public bam file from ISB-CGC at the address: gs://gdc-ccle-open/692a845c-7957-41f2-b679-5434c69ba25b/G27328.Calu-6.1.bam

To install Docker and Nextflow, see our VM Workflow Tools Installation Cheatsheet for instructions. To set up gcsfuse in order to get access to the BAM file, please visit Running Workflow with GCSFUSE.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/Nextflow-GCgather

Running Nextflow

You should have a Nextflow-GCgather directory with one file called Nextflow-GCgather.nf inside. We are going to change the address in this file to the one you created in the Running Workflow with GCSFUSE tutorial.

#go into the folder
$ cd Nextflow-GCgather
$ nano Nextflow-GCgather.nf

At the top of the file you will see this:

#!/usr/bin/env nextflow
myBamSample = Channel.fromPath('/home/thinh_vo/sample/*.bam')

Replace “/home/thinh_vo/sample/*.bam” with your new address from the gcsfuse tutorial for example: “/home/thinh_vo/testGcsfuse/*.bam”. Now the script is ready to run with Nextflow.

#Go to where the Nextflow executable file was installed in this example. It will be outside the Nextflow-GCgather directory.
#First, we get out of Nextflow-GCgather directory.
$ cd ..
#execute nextflow with docker image:
$./nextflow run Nextflow-GCgather/Nextflow-GCgather.nf -with-docker gcr.io/genomics-tools/samtools

Note

This BAM file is quite large; it may take about 15 mins ~ 20 mins to run.

Once Nextflow is finished, the result will be on the screen, or you can find it at Nextflow-GCgather/Sam_results/final_gc_stats_out.txt.

Running Nextflow with visualization

You can use this command instead to run Nextflow; it will out put a visualization file named “flowchart.png”.

$./nextflow run Nextflow-GCgather/Nextflow-GCgather.nf -with-dag flowchart.png

It should look like this:

[image: ../../_images/RunningNextflowWithBam.png]

To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/GC-gather].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running SNAKEMAKE pipeline on public Bam file from ISB-CGC

This workflow gathers GC content from a bam file or a list of Bam files to a text file.

Requirements:

	Anaconda/Miniconda and how to activate the conda environment from a file

	Gcsfuse

	A public bam file from ISB-CGC at the address: gs://gdc-ccle-open/692a845c-7957-41f2-b679-5434c69ba25b/G27328.Calu-6.1.bam

To install and set up Anaconda/Miniconda, you can visit the first tutorial Your First Workflow on Google Cloud Virtual Machine, To set up gcsfuse in order to get access to the BAM file, please visit Running Workflow with GCSFUSE.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/Snakemake-GCgather

Running Snakemake

You should have a Snakemake-GCgather directory with 2 files Snakefile and environment.yml inside. We are going to activate the conda environment from the file (see Your First Workflow on Google Cloud Virtual Machine for more information)
. Then we are going to change change the address in Snakefile to the one you created in the Running Workflow with GCSFUSE tutorial

#go into the folder
$ cd Snakemake-GCgather
$ nano Snakefile

At the top of the file you will see this:

#line 1:
IDS, = glob_wildcards("/home/thinh_vo/testGcsfuse/{sample}.bam")
#line 7-8:
input:
 "/home/thinh_vo/testGcsfuse/{sample}.bam"

Replace “/home/thinh_vo/testGcsfuse/{sample}.bam” with your new address from the gcsfuse tutorial for example: “/home/thinh_vo/testGcsfuse/{sample}.bam”. Now the script is ready to run with Snakemake.

$ snakemake

Note

This Bam file is quite large, it may take about 15 mins ~ 20 mins to run.

Once snakemake is finished, the result will be on the screen, or you can find it at Snakemake-GCgather/final/final_gc_stats_out.txt

Running Snakemake with visualization

You can use this command instead to run Snakemake, it will out put a visualization file named “flowchart.svg”

$ snakemake --dag | dot -Tsvg > flowchart.svg

It should look like this:

[image: ../../_images/RunningSnakemakeWithBam.png]
To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/GC-gather]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running CWL pipeline on public Bam file from ISB-CGC

This workflow gathers GC content from a BAM file (or a list of BAM files) to a text file.

Requirements:

	Docker

	Gcsfuse

	CWLtool (CWL)

	A public bam file from ISB-CGC at the address: gs://gdc-ccle-open/692a845c-7957-41f2-b679-5434c69ba25b/G27328.Calu-6.1.bam

To install Docker and CWL, see our VM Workflow Tools Installation Cheatsheet for instructions. To set up gcsfuse in order to get access to the BAM file, please visit Running Workflow with GCSFUSE.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/CWL-GCgather

Running CWLtool

You should have a CWL-GCgather directory with 6 files inside: 1 main workflow file “CWL-GCgather.cwl”, 4 *tools.cwl and . We are going to change the address in scatter_gather_pipeline.yml file to the one you created in the Running Workflow with GCSFUSE tutorial

#go into the folder
$ cd CWL-GCgather
$ nano scatter_gather_pipeline.yml

At the top of the file you will see this:

filein:
 - {class: File, path: /opt/testGcsfuse/G27328.Calu-6.1.bam}

Replace “/home/thinh_vo/testGcsfuse/G27328.Calu-6.1.bam” with your new address from the gcsfuse tutorial for example: “/home/thinh_vo/testGcsfuse/G27328.Calu-6.1.bam”. Now the script is ready to run with CWLtool.
Save the change, then run the script with this command:

$ cwltool CWL-GCgather.cwl scatter_gather_pipeline.yml

If you receive this error: “docker: Got permission denied while trying to connect to the Docker daemon socket at unix”

Try:

$ sudo groupadd docker
$ sudo usermod -aG docker ${USER}
close and reopen VM then run the script again

Note

This Bam file is quite large, it may take about 15 mins ~ 20 mins to run.

Once CWLtool is finished, the result will be in the same folder called “final_output.txt”

To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/GC-gather]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running WDL pipeline on public Bam file from ISB-CGC

This workflow gathers GC content from a BAM file (or a list of BAM files) to a text file.

Requirements:

	Java

	Graphviz

	Docker

	Gcsfuse

	WDL (Cromwell and Womtool)

	A public bam file from ISB-CGC at the address: gs://gdc-ccle-open/692a845c-7957-41f2-b679-5434c69ba25b/G27328.Calu-6.1.bam

To install Java, Docker, Graphviz and WDL, see our VM Workflow Tools Installation Cheatsheet for instructions. To set up gcsfuse in order to get access to the BAM file, please visit Running Workflow with GCSFUSE.

Note

The requirements above are crucial to running this workflow. Please make sure you have them installed properly prior to running this workflow.

Installing Cromwell and Womtool:

Download the cromwell-XY.jar and womtool-XY.jar at https://github.com/broadinstitute/cromwell/releases to your local machine

Note

“XY” in cromwell-XY.jar and womtool-XY.jar is the version of the software. At the time of this tutorial, the latest version is “51”. For all the code from here “XY” will be “51” e.g. cromwell-XY.jar becomes cromwell-51.jar. Please change the code accordingly to reflect the version that you have.

Example using Wget:

$ wget https://github.com/broadinstitute/cromwell/releases/download/52/cromwell-52.jar
$ wget https://github.com/broadinstitute/cromwell/releases/download/52/womtool-52.jar

Download this tutorial:

$ sudo add-apt-repository universe
$ sudo apt update
$ sudo apt install subversion

#cloning this tutorial
$ svn checkout https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/trunk/WDL-GCgather

Running WDL

You should have a WDL-GCgather directory with 3 files inside.
to simplify the command, I will move the cromwell-51.jar and womtool-51.jar into the WDL-GCgather* directory:

$ mv *-51.jar WDL-GCgather/

We are going to change the address in bamfiles.txt file to the one you created in the Running Workflow with GCSFUSE tutorial

#go into the folder
$ cd WDL-GCgather
$ nano bamfiles.txt

At the top of the file you will see this:

/home/thinh_vo/testGcsfuse/G27328.Calu-6.1.bam bam1

Replace “/home/thinh_vo/testGcsfuse/G27328.Calu-6.1.bam” with your new address from the gcsfuse tutorial for example: “/home/thinh_vo/testGcsfuse/G27328.Calu-6.1.bam”. Now the script is ready to run with WDL.
Save the change, then run the script with this command:

$ java -jar cromwell-51.jar run gcstats.wdl -i gcstats.inputs

Note

This Bam file is quite large, it may take about 15 mins ~ 20 mins to run. Also make sure you have installed Java.

Once the Cromwell finished, the result will be located inside the folder called cromwell-executions (also they will announce right before they stop running where the output is (see image below))

It should look like this, the final_gc_stats_out.txt is the final output of this workflow :

[image: ../../_images/RunningWDLWithBam_4.png]
[image: ../../_images/RunningWDLWithBam_3.png]

Creating visualization with Womtool

Run this command:

$ java -jar womtool-51.jar graph gcstats.wdl | dot -Tpng > visual.png

A file named “visual.png” will be created and ready to be downloaded

It should look like this:

[image: ../../_images/RunningWDLWithBam_5.png]
To see the result of this workflow, you can check it here [https://github.com/isb-cgc/RunningWorkflows-on-the-GoogleCloud/tree/master/Results/GC-gather].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC Notebooks

What’s a notebook?

Notebooks [https://towardsdatascience.com/jupyter-lab-evolution-of-the-jupyter-notebook-5297cacde6b] provide an interface to an interactive analysis environment. They are a mix of code (usually R or Python), descriptive explanations, and visualizations. They’re often used to demonstrate an analysis in a step by step fashion. We provide a set of notebooks below as tutorials for several frequently run analyses. You can run these through Jupyter Lab [https://jupyterlab.readthedocs.io/en/stable/], R Studio [https://bookdown.org/yihui/rmarkdown/notebook.html], or Google Colaboratory [https://colab.research.google.com/].

I’m a novice, how do I…

	How do I get started fast?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/Quick_Start_Guide_to_ISB_CGC.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/Quick_Start_Guide_for_ISB-CGC.md]

	How to find GDC file locations?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_Find_GDC_File_Locations.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_Find_GDC_File_Locations.md]

	How do I plot a BigQuery result?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_plot_BigQuery_results.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_plot_BigQuery_results.md]

	How do I plot a heatmap using data in BigQuery?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_make_a_heatmap_using_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_make_a_heatmap_using_BigQuery.md]

	How do I work with cloud storage?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_work_with_cloud_storage.ipynb]

	

	How do I create cohorts of patients?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_cohorts.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_cohorts.md]

	How to use PyPika or dbplyr to build a query?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_PyPika_to_create_a_BigQuery_SQL_query.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_dbplyr_to_create_a_BigQuery_SQL_query.md]

	How do I create a complex cohort?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_a_complex_cohort.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_a_complex_cohort.md]

	How do I join multiple tables?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_complex_joins.ipynb]

	

	How do I get started working with the COSMIC datasets?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/Intro_to_COSMIC_in_BigQuery.ipynb]

	

	How do I convert a .bam file to a .fastq file with samtools?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_convert_bams_to_fastq_with_samtools.ipynb]

	

	How do I find a tool using the GA4GH Tool Repository Service (TRS)?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_find_a_tool_using_GA4GH_TRS.ipynb]

	

	How do I run a tool using a workflow execution service (WES)?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_a_GA4GH_tool_using_WES.ipynb]

	

	How do I use the ISB-CGC APIs?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_ISB_CGC_APIs.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_ISB-CGC_APIs.md]

I’m an advanced user, how do I…

	How do I make a BigQuery table from an NCBI GEO data set?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_make_NCBI_GEO_BigQuery_tables.ipynb]

	

	How do I quickly compare cohorts with survival analysis and feature comparison?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/Staging-Notebooks/Notebooks/How_to_quickly_compare_cohorts.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/Staging-Notebooks/Notebooks/How_to_quickly_compare_cohorts.md]

	How do I run an ANOVA with BigQuery?*

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_an_ANOVA_test_in_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_an_ANOVA_test_in_BigQuery.md]

	How do I score gene sets in BigQuery?*

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_score_gene_sets_with_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_an_ANOVA_test_in_BigQuery.md]

	How do I correlate gene expression and copy number variation?

	Python [https://github.com/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/Correlation_GeneExpression_vs_CNV.ipynb]

	

	How do I compute gene-gene expression correlation using BigQuery?

	Python [https://github.com/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/BigQuery-SpearmanCorrelation.ipynb]

	

	How do I create randomized subsets of patients using BigQuery?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_a_random_sample_in_bigquery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_cohorts.md]

	How do I convert a 10X scRNA-seq bam file to fastq with dsub?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_10X_bamtofastq_with_dsub.ipynb]

	

	How do I quantify 10X scRNA-seq gene expression with Kallisto and BUStools?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_use_Kallisto_on_scRNAseq_data.ipynb]

	

	How do I do Nearest Centroid Classification using BigQuery?

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_Nearest_Centroid_Classification_with_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_Nearest_Centroid_Classification_with_BigQuery.md]

*Notebook inspired by a Query of the Month Blog post

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Statistical Notebooks

Integrated statistical analysis and exploration of multiple genomic and clinical data types provides researchers with a great possibility to expand our current knowledge of cancer. ISB-CGC offers a great source of diverse data types including gene expression, somatic mutations, clinical data, etc. We have developed a series of notebooks that use BigQuery to compute the statistical associations between different combinations of the data types available in ISB-CGC.

Bioinformatics notebooks

	Significant correlations and their p-values using BigQuery

	Python [https://github.com/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/AllPairs-correlation-GeneExpression-MicroRNA.ipynb]

	

	One-way ANOVA with BigQuery

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_an_ANOVA_test_in_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_an_ANOVA_test_in_BigQuery.md]

	Score gene sets in BigQuery

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_score_gene_sets_with_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_an_ANOVA_test_in_BigQuery.md]

	Nearest Centroid Classification using BigQuery

	Python [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_Nearest_Centroid_Classification_with_BigQuery.ipynb]

	R [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_perform_Nearest_Centroid_Classification_with_BigQuery.md]

Standard pairwise statistics

The following table lists notebooks that compute associations between pairs of data types available in ISB-CGC. They assess the statistical significance for an association using rank-ordered data and a statistical test appropriate to each data type pair depending on categorical or numerical categorization. The Regulome Explorer inspired notebook is a special notebook that allows computation of associations between all possible data types available in the TCGA dataset; more details are below.

	Data type

	Data type

	Statistical test/notebook

	Gene expression

	Clinical

	Kruskal-Wallis score [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/BigQuery-KruskalWallis.ipynb]

	Gene expression

	Somatic mutation

	T-test score [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/BigQuery-StudentTest.ipynb]

	Gene expression

	Gene expression

	Spearman Correlation [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/BigQuery-SpearmanCorrelation.ipynb]

	Somatic mutation

	Clinical

	Chi Square test [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/BigQuery-Chisquare.ipynb]

	Somatic mutation

	Somatic Mutation

	Fisher’s exact test [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/BigQuery-FisherExact.ipynb]

	All types

	All types

	Regulome Explorer inspired notebook [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/RegulomeExplorer-notebook.ipynb]

Regulome Explorer Inspired Notebook

Regulome Explorer [http://explorer.cancerregulome.org/] is a well-established web tool for the exploration and visualization of associations between clinical and molecular features of TCGA data. Regulome Explorer was developed in 2012 in close collaboration between the Institute for Systems Biology and the MD Anderson Cancer Center. It enables users to search and visualize precomputed statistical data filtered according to user-specified parameters. Although Regulome Explorer’s broad functionality and high-quality graphics make it a valuable tool for exploring and visualizing 20 of the 33 TCGA data sets, it does not yet contain analysis of recent releases of TCGA and cannot be easily applied to data sets other than TCGA.

We developed a more flexible version, replicating capabilities of Regulome Explorer, as a Python notebook that uses Google Cloud resources. Rather than working with precomputed, fixed cohorts and fixed results, statistical analyses are dynamically performed in the cloud, with user defined patient cohorts. Moreover, the notebook can be extended so that users can analyze additional data sets available as part of the ‘ISB-CGC BigQuery ecosystem’ such as TCGA, TARGET, CCLE, COSMIC, and others. The notebook can be accessed in Regulome Explorer inspired notebook [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/RegulomeExplorer/RegulomeExplorer-notebook.ipynb].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Data Access and Security Overview

Understanding Data Access Levels

	Public Data Sometimes the word “public” is misinterpreted as meaning “open”. All of the TCGA data is public data, and much of it is open, meaning that it is accessible and available to all users; while some low-level TCGA data is controlled and restricted to authorized users.

	Open-Access Data Depending on how you categorize the data, most of the TCGA data is open-access data. This includes all de-identified clinical and biospecimen data, as well as all Level-3 molecular data including gene expression data, DNA methylation data, DNA copy-number data, protein expression data, somatic mutation calls, etc.

	Controlled-Access Data All low-level sequence data (both DNA-seq and RNA-seq), the raw SNP array data (CEL files), germline mutation calls, and a small amount of other data are treated as controlled data and require that a user is properly authenticated and have dbGaP authorization prior to accessing these data.

Note that many public, open-access datasets may still be restricted in various ways. Typically, a License document containing explicit terms of use will be associated with each dataset. Some institutions have their own licenses, though many uses one of the Creative Commons [https://creativecommons.org/] licenses. License terms apply to both data and source-code, so please be aware of the terms of a license whenever you plan to reuse data or source code produced by someone else. We recommend that you review the TCGA Publication Guidelines [https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/citing-tcga].

Understanding Data Security

Much of the low-level TCGA and TARGET data (including DNA and RNA reads, and SNP CEL files, for example) are
classified as “controlled access data” and are under the control of the
dbGaP [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/about.html]
Data Access Committee (DAC).

Investigator(s) requesting to receive genomic data in accordance with the
NIH Genomic Data Sharing Policy [https://gdc.cancer.gov/access-data/data-access-policies]
are required to submit:

	a data access request (DAR)

	a research use statement (RUS)

Note: Requesters and institutional signing officials (SO) must have NIH eRA user IDs to begin this process. Visit the electronic Research Administration [http://era.nih.gov] (eRA) for more information on registering for an NIH eRA account. NIH staff may utilize their NIH login. (See the dbGaP Data Access Request Portal [http://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login]
for additional instructions [https://osp.od.nih.gov/wp-content/uploads/Extramural_Flowcharts_for_Data_Access.pdf].)

Additionally, they must:

	Submit a Data Use Certification [https://osp.od.nih.gov/wp-content/uploads/Model_DUC.pdf] (DUC) co-signed by the designated Institutional Official(s) at their sponsoring institution

	Protect data confidentiality (any data which has been designated “controlled” must be protected accordingly, unless prior release authorization is obtained from an NCI data custodian)

	Ensure that appropriate data security measures are in place

Google Cloud Platform and Access Control

In the context of Google Cloud Platform (GCP) projects, it is important to realize that all members of a GCP project must have at least read access to all data stored within that project, as well as to all virtual machines, boot disks, and persistent disks attached to that project.

Therefore, if a principle investigator (PI) establishes a GCP project (project-A) for the purposes of analyzing controlled data (eg performing mutation analysis on TCGA sequence data), then:

	All members of project-A must be authorized to view controlled data.

	The outputs of certain analyses performed on controlled data, if they are summary in nature, may no longer be controlled data and could be copied to a second GCP project (project-B) for further downstream analyses by researchers who are not authorized to view controlled data.

	Researchers who are not authorized to view controlled data could be made members of project-B, while users who are authorized could be members of both project-A and project-B.

Your Responsibilities

The PI and the PI’s institution are responsible for and will be held accountable for ensuring the security of controlled data, not the cloud service provider. The Google Cloud Platform has been certified as FedRAMP compliant [https://marketplace.fedramp.gov/#/product/google-services-google-cloud-platform-products-and-underlying-infrastructure?sort=productName&productNameSearch=google]
which means that it has been independently assessed and shown to meet all necessary FedRAMP [https://www.fedramp.gov/] security controls. This provides the assurance that the data security and access control mechanisms implemented by the Google Cloud Platform and made available to end users are sufficient to safeguard the data. However, it remains the PI’s responsibility to ensure that these access control mechanisms are used appropriately and effectively within the context of the PI’s GCP project.

You should think about securing controlled data within the context of your GCP project in the same way that you
would think about securing controlled data that you might download to a file server or compute cluster at your
own institution. Your responsibilities regarding the appropriate use of the data are the same in a cloud environment.
For more information, please refer to the
NIH Security Best Practices for Controlled-Access Data [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?document_name=dbgap_2b_security_procedures.pdf].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Accessing Controlled Data

You can gain access to controlled data by two different methods via ISB-CGC. The methods can be used simultaneously if needed.

Select this method for controlled access via personal user credentials:

	Provides access to controlled data for 24 hours at a time;

	Uses your personal credentials;

	Example uses: the ISB-CGC Web App, R Studio or running short jobs on Google Compute Engine that complete in under 24 hours

Select this method for controlled access via service account credentials:

	Provides access to controlled data for seven days at a time;

	Uses the credentials of a service account, acting on your behalf (To learn about service accounts, refer to the Google documentation [https://cloud.google.com/iam/docs/service-accounts].);

	Example uses: using a Google Cloud Project; running a program from a Google Compute Engine (GCE) Virtual Machine (VM) that takes longer than 24 hours to complete

Note

If you are looking to gain access to COSMIC data, please see the COSMIC documentation.

Prerequisites

You’ll need the following before requesting controlled access via ISB-CGC:

	A Google identity;

	An NIH or electronic Research Administration (eRA) account;

	Database of Genotypes and Phenotypes (dbGaP) permission for each type of controlled access data of interest, linked to your NIH or eRA account;

	Your Google identify linked to your NIH/eRA account via the ISB-CGC Web App.

1) Google identity

If you don’t have a Google identity yet, please see the ISB-CGC Quick-Start Guide.

2) NIH or eRA account

Intramural researchers can use their NIH log-in account, and extramural researchers will need to have a personal eRA account. Either way, the user’s NIH/eRA
account needs to be affiliated with their institution’s eRA account. Your principal investigator (PI) or other authorized person can create
your personal eRA account and link it to your institution’s eRA account.

If you already have an NIH/eRA account, you can log into eRA at https://public.era.nih.gov/commons.

	If the Institution listed for you is not your current one, ask your PI to change it for you.

	If you are the PI or other authorized person, you can create, link and update accounts from here.

Visit electronic Research Administration (eRA) [http://era.nih.gov] for more information on registering for a NIH eRA account.

3) Link your eRA (or NIH) account to dbGaP permissions.

Your principal investigator (PI) can link your NIH/eRA account to dbGaP [http://dbgap.ncbi.nlm.nih.gov] permissions for selected controlled access data sets.

For more information on applying for dbGaP authorization to access controlled data, please see
this dbGap How to Video: Apply for Controlled Access Data [http://www.youtube.com/watch?v=-3tUBeKbP5c].

For additional information, refer to Tips for Preparing a Successful Data Access Request [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?document_name=GeneralAAInstructions.pdf],
and Understanding Data Security. Please be sure to review the Data Use Certification Agreement for TCGA controlled data [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v9.p8] and TARGET controlled data [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000218.v17.p6].

4) Link your NIH/eRA and Google identities.

Before you can access any controlled-data hosted by the ISB-CGC, you must first associate your Google identity (which you use to sign in to the ISB-CGC Web App and
access the Google Cloud) with a valid NIH or eRA account associated with a dbGaP data-access request.

This is accomplished through the ISB-CGC Web App. Follow the directions on the How to link NIH/eRA and Google identities page.

During this process:

	You will first be redirected to an NIH login page, and once you have successfully authenticated, ISB-CGC will store an association between your NIH/eRA identity and your Google identity. (Note that this should be a one-to-one association.)

	Once you have authenticated, ISB-CGC will check which data sets (such as TCGA, TARGET controlled data, etc.) that you have been authorized (by dbGaP) to access. ISB-CGC obtains an updated whitelist for each of the hosted data sets from dbGaP every day. If you have just recently been granted access by dbGaP, there may be a 24 hour delay before you will be able to request access to this data on ISB-CGC.

	Once you have authenticated to NIH via the Web App, and your dbGaP authorization has been verified, the Google identity associated with your account will have access to the controlled data for 24 hours.

These prerequisite steps only need to be done once, unless your accounts become unlinked, you need access to another dbGaP controlled data set, or some other reason.

Controlled Access Via Personal User Credentials

The first time that you perform the above steps, you are automatically granted controlled access via your personal uer credentials. This access lasts for 24 hours, though it can be extended. Subsequently, to obtain access, sign into the Web App, click on your persona (or Account Details on the drop down menu next to your name). Click the Get Controlled Access button below Obtain controlled access for 24 hours.

[image: ../_images/DataAccess-24hours.png]

Controlled Access Via Service Account Credentials

To access controlled data programmatically, such as through Google Cloud or when running a VM, you’ll need to register a GCP and service account. Follow these steps:

	Registering a Google Cloud Project & Service Account

Controlled Access in the Google BigQuery Console

The BigQuery project “isb-cgc-cbq” contains the ISB-CGC controlled access data which is stored in BigQuery tables. To obtain access to these ISB-CGC tables within the Google BigQuery Console, you must link to them within the BiqQuery Console. Before doing so, you must have followed all the prerequisites above, including linking your Google identity to your NIH/eRA account via the ISB-CGC Web App.

When you access BigQuery from your Google Cloud Platform Console (see here for more information on this), you will be presented with the following page:

[image: ../_images/BlueArrowDropdown.PNG]
The blue arrow will produce a drop down list; select ‘Switch to Project’; then click ‘display project…’

You will then be presented with the following page:

[image: ../_images/SearchProjectSection.PNG]
As shown in the image below you will need to type in “isb-cgc-cbq” in the project id and then click okay.

[image: ../_images/CABQisb-cgc-pinning.PNG]
Once this has been completed you will be able to see the appropriate controlled access ISB-CGC BigQuery data sets on the left hand side (see screenshot below).

[image: ../_images/isb-cgc-cbq_tablename.PNG]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

How to link your NIH/eRA & Google identities

This section shows you how to associate your Google identity to your NIH or eRA identity through the Web App. (Your NIH/eRA identity is the one associated
with dbGaP, authorizing you to work with controlled data.) This is a necessary step for gaining access to controlled data. When you are done, you’ll be able to access controlled
data via your personal user credentials. If you are looking to access controlled data via a service account, this is a prerequisite step.

At the bottom of this section, there are also instructions for pinning the ISB-CGC controlled access BigQuery project “isb-cgc-cbq” to your Google BigQuery Console.

Some screenshots can be enlarged by clicking on them.

To link your NIH/eRA identity with your Google identity (the Google account you use to login to the ISB-CGC system),
select the “persona” icon next to your login name after you have signed in to the ISB-CGC Web App.
Or, you can click on the drop down menu next to your name, and click on Account Details.

You will then see the following page:

[image: ../../_images/AccountDetails.png]
Click the Associate with eRA Account button.

[image: ../../_images/AssociateWithERA.png]
You will see a pop up describing all the steps needed to link your Google identy (email address) to your NIH identity via the Data Commons Framework (DCF).
In this case, ‘NIH identity’ also refers to your eRA Commons account identity. Click on the Go to DCF button.

[image: ../../_images/LinkNIHIDInstructions.png]
You will then be redirected to an NIH login page, in order to be authenticated by NIH:

[image: ../../_images/NIHLogin.png]
If you have an eRA identification, use your eRA Commons username and password to log in.
If you have an NIH PIV card, use the Smart Card Login.

Once you have been authenticated by NIH, and your NIH identity has been verified to be on
the current dbGaP whitelist, you will have access to controlled data for 24 hours.

[image: ../../_images/GEN3-DCF-RAS.png]
Select the Yes, I Authorize button at the bottom right of the page to authorize the Data Commons Framework to associate your Google identity with controlled data.

When presented with a “Sign in with Google” page, select the email that you used when you logged into the ISB-CGC web application.

You will be redirected back to the ISB-CGC Web App. A Warning Notice displays, indicating that you must abide by the rules and regulations provided by the DUCA Use Agreement. In the Data Access panel, it will indicate “dbGaP Access Authorized”.

[image: ../../_images/DataAccess-WarningMsg.png]
Note that the ISB-CGC system will enforce a one-to-one relationship between NIH/eRA identities and Google identities. In other words, a single NIH or eRA identity may not be used to gain access to controlled data by multiple, different Google identities.

Unlink Google identity from NIH/eRA identity

If you need to unlink your eRA account from your Google account (for example if you want to change which Google identity you use to sign in to the ISB-CGC platform), you may do so by clicking on the Unlink button below “<GoogleID> is linked to NIH identity <NIH/eRA Commons ID>”.

[image: ../../_images/DataAccessPanel.png]
In the unusual circumstance that your NIH identity has been registered with another Google identity (eg with another Google identity that you have), you will see a message, “You tried to link your email address to NIH account <username>, but it is already linked to <Google identity email address>.”

If this happens, please sign in with that other Google identity and “unlink” your NIH/eRA account from that identity, as described above. You will then be able to register your NIH/eRA account with the desired Google identity.
If you are not able to resolve the issue, contact us at feedback@isb-cgc.org and we will help you resolve it.

Extending Your Access by 24 hours

If you need to extend your access to controlled data for another 24 hours from now (eg if you have a compute job which is using these Google credentials to access
controlled data and it is still running), click the Extend button on the Data Access panel on the Account Details screen (pictured above).
Your access will be extended by 24 hours from the time that you click the button.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Registering a Google Cloud Project & Service Account

This section will show you how to register a Google Cloud Project (GCP) and a Service Account for the GCP, thereby gaining access to controlled data which you can use programmatically. Users need to have access to a Google Cloud Project to perform the steps in this section. If you don’t, see the the ISB-CGC Quick-Start Guide.

GCP projects are automatically configured with a “Compute Engine default service account” which you can find on the
IAM & Admin page [https://console.cloud.google.com/iam-admin/iam/project] of the Cloud Console [https://console.cloud.google.com/home/dashboard]. When running on a Google Compute Engine (GCE) virtual machine (VM), a service account associated with your Google Cloud Project (GCP) is acting on your behalf and those are the credentials being
used rather than your personal credentials.

In order for this service account to access controlled data, you must register it with ISB-CGC. Once this process has completed successfully, this service account will be able to access controlled data for up to seven days. If the service account (ie any program running on a VM using the service account’s credentials) tries to access controlled data
after the seven day expiration, it will get an Access Denied error. To prevent this from causing problems with long-running jobs, you can extend access by another seven days (see below).

To allow flexibility while working with different research teams and different processes, you can have many GCPs registered with ISB-CGC, as well as many service accounts registered per GCP.

Requirements for Registering a Google Cloud Project Service Account

To be able to register your GCP and at least one service account to access controlled data, the following must all be true:

	
	You must have the role of “owner” on the Google Cloud Project, because you will need to add an ISB-CGC service account as a new project member and a DCF service account as a new project member. The screenshots below will show you how to add these service accounts to your project:

	
	ISB-CGC service account – 907668440978-oskt05du3ao083cke14641u35deokgjj@developer.gserviceaccount.com

	DCF service account – fence-service@dcf-prod.iam.gserviceaccount.com

	
	ALL members of the Google Cloud project:

	
	Must be authorized to use the data set; that is, each of them must be a registered dbGaP “PI” or “downloader”. (See dbGap Data Access Request Portal [http://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login], and Understanding Data Security [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/sections/data//TCGA_Data_Security.html] for more details).

	Must have linked their NIH/eRA identity to their Google identity via the ISB-CGC Web App, and therefore have been authenticated at least once.

	
	The Google Cloud project:

	
	Cannot be associated with an Organization.

	Cannot have Google Groups or other multi-member identifiers (e.g. all authenticated Google users) which have been provided with a project role

	Must have the ISB-CGC monitoring service account (SA) assigned to an Editor role. (See instructions below.)

	
	Service Accounts on the GCP:

	
	All SAs with roles in the project must belong to the project, with the exception of the ISB-CGC monitoring SA; this means that all Google-managed SAs with project roles must belong to the project as well

	The SA you are registering cannot be the ISB-CGC monitoring SA, or SAs from other projects

	You have not created any keys for any SAs in the project

	No IDs have been assigned roles on any SAs in the project

If any of these requirements are not met, your GCP and any associated service accounts will not be able to access controlled data. An automated email will be sent to the GCP project owner(s) if data access is revoked.

Registering your Google Cloud Project Service Account

Click on screen shots to enlarge them.

To register your Google Cloud Project and its service account with ISB-CGC, go to the Account Details page. After signing into the ISB-CGC Web App,
either select the “persona” icon next to your login name or select Account Details from the drop down menu under your login name,
which takes you to the following page:

[image: ../../_images/RegisteredGCPs.png]
Click the Register button in the Google Cloud Platform section. That takes you to the following page:

[image: ../../_images/RegisterAGCPForm.png]
The instructions will walk you through how to add the necessary ISB-CGC and DCF service accounts to your project. Go to the Google Cloud Platform [https://console.cloud.google.com/] and follow these steps.
You can hide the instructions by selecting the blue Instructions button.

Please be sure to add both service accounts listed below. If you don’t add both service accounts you will run into issues viewing the controlled data in ISB-CGC.
Then return to the ISB-CGC Register a Google Cloud Project page, enter your Google Cloud Project ID and, click Verify.

[image: ../../_images/RegisterServiceAccountsList.png]
Once you have completed these steps, a listing of the Google Cloud Project members will display:

[image: sections/controlled-access/../webapp/GCPMembers.png:scale:50]
Click the Register button to go to the next screen:

[image: ../../_images/0007projectregistered.PNG]
Select Register Service Account from the drop down menu on the left of the GCP to which you want to add a service account. By default, there will be the
Compute Engine Default service account in the Enter the service account ID text box (see screenshot below). Under Which dataset(s) would you like to use?, select the programs for which you would like to have controlled access.

[image: ../../_images/RegisterAServiceAccountFirstScreen.PNG]
If you receive the error message listed below, this signifies you need to enable the Default Compute Engine API for your Google Cloud Project.
For more information on how to enable all the API’s you will need to work on a Google Cloud Project please go
here [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/DIYWorkshop.html#enabling-required-google-apis].

[image: ../../_images/EnableComputeEngineError.PNG]
Once you click the Verify Service Account Users at the bottom of the page, you will be presented with multiple lists. You will be presented with the
Verification Results, Google Cloud Project User ISB-CGC Registration and Identity Linkages, Dataset Permissions Verification, Registered Service Account Verification
Results, Google Cloud Project Verification Results, and the Google Cloud Project Service Account Verification Results (see screenshots below).
All columns must have a green checkmark in them for each user before your service account can be registered.

[image: ../../_images/ServiceAcctRegTable.png]
[image: ../../_images/ServiceAcctRegTable2.png]
If all the requirements for registering a service account are met, the account will be registered for controlled access. If not, the service account can only use
open access data. View the registered data set name by selecting the drop down menu next to the number of service accounts (see below).

[image: ../../_images/ServiceAcctRegSuccess.png]

Managing your Google Cloud Projects & Service Accounts

Once your GCP and Service Account are registered, you can add or remove additional service accounts by following the instructions below.
You can also extend the use of a service account for another seven days, or reauthorize a service account after you have corrected errors that
previously caused it to have its permissions revoked.

Adding additional Google Cloud Projects

To register additional Google Cloud Projects, select the + Register New Google Cloud Project button from the “Registered Google Cloud Projects” page (see screenshot below).

[image: ../../_images/RegisterAnotherGCP.PNG]

Deleting Google Cloud Projects

To unregister a GCP, select the Unregister Project button from the drop down menu beside the project on the “Registered Google Cloud Projects” page (see screenshot below).

[image: ../../_images/UnregisterAGCP.PNG]

Adding additional service accounts to a Google Cloud Project

To add additional service accounts to a GCP, select Register Service Account from the drop down menu beside the project (see screenshot below).

[image: ../../_images/0007projectregistered.PNG]

Adjusting a Service Account using the Adjust Service Account page

Add or remove a controlled data set from one specific service account using this feature. Selecting the drop down menu next to the number of service accounts to view
the service account names, then select the plus “+” sign icon next to the trash can (see screenshot below).

[image: ../../_images/AdjustServiceAccount.png]

Deleting Service Accounts from Google Cloud Projects

To delete a service account from a GCP (not allowing it to be used for programmatic access to controlled data), click the “trash can” icon beside the service account
(see screenshot below).

[image: ../../_images/DeleteServiceAccount.png]

Extending Your Service Account Access by Seven Days

Once you have registered a Service Account, you have seven days before the access is automatically revoked. To extend the service account access for another seven days
(e.g. if your program is still running), select the “refresh” icon beside the service account (see screenshot below).

[image: ../../_images/RefreshServiceAccount.png]

Reauthorizing a Google Cloud Project(s) Service Account(s)

Your service account may have its permissions revoked (because, for example, the 7-day limit has expired, or you have added a member to the GCP who is not
authorized to use that controlled data). If permissions were revoked because an unauthorized user was added to the project,
the Google Cloud Project owner will be sent an email specifying the Service Account, GCP Project, and the user who caused access to be revoked.

To reauthorize the service account:
1) Remedy the problem that resulted in access being denied, and
2) Select the “adjust” icon beside the service account (see screenshot below) and add the controlled datasets to the service account.

[image: ../../_images/AdjustServiceAccount.png]

Google Cloud Project Associated to an Organization Will NOT Work with controlled data

If your Google Cloud Project is associated to an organization, you will be unable to register the service account to controlled data. An error message
similar to this one will display: “GCP cgc-08-0126 was found to be in organization ID 8784632854871; its service accounts cannot be registered for use with
controlled data.” This is mainly because ISB-CGC cannot see the permissions associated to the organization’s project; therefore, it is considered a security risk.
We are currently working with Google to resolve this issue.

[image: ../../_images/OrganizationFound.PNG]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Variant Data in BigQuery

Here we illustrate how variant data is stored in ISB-CGC BigQuery tables using our own internal ETL pipeline.

VCFs

ISB-CGC has developed an ETL pipeline to take controlled access VCF files found at Genomic Data Commons (GDC). This transforms pipeline is able to take the terabytes of variant data found at GDC and transform them into one large and flattened Google BigQuery table. The transforms pipeline ISB-CGC has developed allows researchers to query, use command line tools, or use a programming language of your choice to gain statistical insights of an analysis someone might be interested in.

How To Query The Tables

Using BigQuery the variant tables can used to analyze the data through SQL queries.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Variant Call Format (VCF)

Variant Call Format files (VCF) are the standard file format to store identified variants within sequenced data. The creation of VCF files start from sequencing whole genomes (WGS) or whole exome sequencing (WXS) that create FASTQ files. The file containing the sequenced genome is then aligned to the appropriate reference genome which then generates a SAM, BAM, or CRAM files. The last step to generate the VCF file from either of the three alignment files, the differing aligned reads will be identified when comparing to the reference genome and written out to a VCF file.

As variant data is increasing and growing in size researchers face the problem of being able to analyze all the new data arriving as well as the old data. The new and old VCF files that are being curated by all these programs (Ex. TCGA,TARGET, and FM) are stored as individual files on local computers or on High Performance Computing (HPCs) for download. Researchers face the problem of analyzing these large scale data at once to gain insights for the analysis they are running.

Accessing Controlled Variant Data

Some ISB-CGC Bigquery tables contain sensitive information about patients. These type of files are known as controlled access files. To obtain access to our controlled data please follow the steps in our Accessing Controlled Data [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Gaining-Access-To-Controlled-Access-Data.html] page to obtain permission.

Flattened VCF BigQuery Table

The approach that the ISB-CGC variant transforms tools took was to engineer an output that mimics a VCF file format. The flattened table format allows for an easy and familiar read if you have worked with VCF files in the past. The BigQuery table presented in the picture is a randomly generated file which is meant to resemble a controlled access VCF file. In this case we generated one that emulates a TCGA vcf file. The first 11 columns seen in the image begin just as a VCF file. In addition to keeping a similar structure to allow further analysis of information, columns such as NORMAL and TUMOR are split into their own individual columns. The objective of the flattened file is to bring ease and understandability to our users that work with VCF files in the past or brand new to this area of research.

[image: ../_images/BigQuery_VCF_Flattened.png]

Note

The tables found in our repository are clustered based on CHROM, ID, analysis_workflow_type, and project_short_name. This will help with faster queries and reducing costs.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

SQL Query Examples

Here are examples on how to leverage SQL queries on the Google Cloud Console to analyze the data in our tables. In addition to example queries we added a list of snippets which emulates the commands from VCFTools.

Note

Best practices to keep costs down for queries is to avoid using ‘*’ and choosing specefic columns.

Emulating VCFTools

—chr

SELECT * FROM `isb-cgc-etl.STAGING.Clustered_test2`
WHERE CHROM = 'chr22'
LIMIT 1000

—remove-filter-all

SELECT * FROM `isb-cgc-etl.STAGING.Clustered_test2`
WHERE FILTER = 'PASS'
LIMIT 1000

—maxDP

SELECT * FROM `isb-cgc-etl.STAGING.Clustered_test2`
WHERE DP_Normal > ’10’
AND DP_Tumor > ‘50’
LIMIT 1000

In-Depth Queries

Notes to include examples on caveats:
POS is a integer, so in sql query don’t use the quotes

In this query, let’s find all information for patients who have ALL-P2 and a Thymine mutation at position 161550724 on Chromosome 1.

SELECT * FROM `isb-cgc-etl.STAGING.Clustered_test2`
WHERE project_short_name = "TARGET-ALL-P2" AND CHROM = "chr1"
AND POS = 161550724 AND ALT = "T"

In this query, let us look at chromosome 1. We want to find positions between 20thousand and 5million. Not only are we interested in chromosome and position but also from a specific project and analysis workflow type and in this case we want to look into the project TARGET-WT. These are patients that are diagnosed with wilms-tumor. For the analysis workflow type we are interested in MuTect2.

SELECT
 CHROM,POS,REF,ALT,GT_TUMOR,GT_NORMAL
FROM
 `isb-cgc-etl.STAGING.Clustered_test2`
WHERE
 CHROM = 'chr1'
 AND POS BETWEEN 20000 and 5000000
 AND project_short_name = "TARGET-WT"
 AND analysis_workflow_type = "MuTect2"

The query below returns the ref and alt alleles found between base positions 20,000 and 5,000,000 on chromosome 1 along with genotype information for whole genome tumor and normal samples (using filter analysis_workflow_type like %LiftOver%) across all TARGET projects.

SELECT CHROM,POS,REF,ALT,project_short_name, GT_TUMOR,GT_NORMAL
FROM
`isb-cgc-etl.STAGING.Clustered_test2`
WHERE
 CHROM = 'chr1'
AND POS BETWEEN 20000 and 5000000
AND analysis_workflow_type like "%LiftOver%"

We demonstrate a join in the query below between the TARGET vcf table and the TARGET RNAseq table to get information for the TARGET-ALL-P3 to identify mutations in the FOXD4 gene.

SELECT CHROM,POS,REF,ALT,vcf.project_short_name, HTSeq__FPKM, GT_TUMOR,GT_NORMAL
FROM
`isb-cgc-etl.STAGING.Clustered_test2` as vcf
 join `isb-cgc-bq.TARGET.RNAseq_hg38_gdc_current` as rna
 on rna.case_barcode = vcf.case_barcode
 WHERE
 vcf.project_short_name = "TARGET-ALL-P3"
 AND gene_name = "FOXD4"
 ORDER By CHROM

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Tutorials and How-To Guides

The links on this page connect to How-To guides, examples and other helpful tutorials. We encourage the community to provide feedback on these examples and also to add your own examples to enrich this public resource! Contact us at feedback@isb-cgc.org

	Video Tutorials

	Query of the Month

	Importing a GDC File Manifest into ISB-CGC

	Analysis Using BigQuery, R & Bioconductor

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Video Tutorials

See the following page for ISB-CGC produced videos giving helpful tours through ISB-CGC:

	ISB-CGC Video Tutorials [https://isb-cgc.appspot.com/videotutorials]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Query of the Month

Welcome to the ‘Query of the Month’ where we’ll be creating a collection
of new and interesting queries to demonstrate the powerful combination of
BigData from the NCI cancer programs like TCGA, and BigQuery from Google.

NOTE! We mostly spend time producing notebooks for our community collection.
Check it out: https://github.com/isb-cgc/Community-Notebooks
ReadTheDocs: https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowTos.html

Query of the Month is produced by the ISB-CGC team, with special effort by:

	David L Gibbs (david.gibbs (~ at ~) systemsbiology (~ dot ~) org)

	Kawther Abdilleh (kawther.abdilleh (~ at ~) gdit (~ dot ~) com)

	Sheila M Reynolds (sheila.reynolds (~ at ~) systemsbiology (~ dot ~) org)

Table of Contents

2019

	July2019: New notebooks added, cohorts and GEO data

	June2019: Community Notebooks launched!

	February2019: BigQuery in R - a refresher

	January2019: Bam slicing in a cloud hosted python notebook.

2018

	December2018: BigQuery Tips & Tricks

	November2018: Transform VCF (DNA variants) files to BigQuery.

	October2018: Jupyter notebooks & Dataproc clusters … in the cloud.

	September2018: R scripts in the cloud.

	August2018: Using BigQuery ML in a shiny app.

	July2018: First look: BigQuery ML.

	June2018: Processing bam files using WDL ‘scatter and gather’.

	May2018: Processing bam files using CWL ‘scatter and gather’.

	April2018: Running CWL workflows in the cloud.

	March2018: Machine learning classifer in BigQuery?! Top Scoring Pairs implementation.

	February2018: BioCircos shiny app, showing pairwise correlations within a pathway.

	January2018: Gene Set Scoring in BigQuery, using the new hg38 mutation tables.

2017

	December2017: BigQuery comparing TCGA samples to GTEx tissues with Spearman correlation.

	November2017: Run an R (or python) script in batch mode using dsub on the google cloud.

	October2017: Using plotly for visualization in Shiny apps. We implement an interatictive heatmap using heatmaply

	September2017: We implement a new statistical test in BigQuery: the one-way ANOVA.

	August2017: A small demo application using BigQuery as the backend for a Shiny app.

	July2017: Look at the BigQuery RECORD data type in methylation tables from the GDC.

	May2017: Continued from April: estimating the distance between samples based on shared mutations in pathways.

	April2017: BigQuery compute a similarity metric on overlapping mutations between samples. Uses MC3 mutation table and data from COSMIC.

	March2017: BigQuery to compute a pairwise distance matrix and a heatmap in R

	February2017: Using BigQuery, define K-means clustering as a user defined (javascript) function

	January2017: Comparing Standard SQL and Legacy SQL.

2016

	December2016: Spearman correlation in BigQuery to compare the new hg38 expression data to the hg19 data

Links

Resources: Helpful information!

July, 2019

This month we’ve added a couple new notebooks. Let us know if they’re useful!

We have a notebook demonstrating how to create sample cohorts based on clinical characteristics.
Second, a notebook demonstrating how to get a dataset from NCBI GEO, transform it to a ‘tidy’ format
and make a BigQuery table.

How do I create cohorts of patients (Python)? [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_create_cohorts.ipynb]

How do I make an NCBI GEO BigQuery table (Python)? [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_make_NCBI_GEO_BigQuery_tables.ipynb]

June, 2019

#*Community Notebooks launched!*

Community Notebooks [https://github.com/isb-cgc/Community-Notebooks/]

After a lengthy hiatus, we’ve returned with a new Community Notebooks repository! This is a central hub, where very specific questions (like an FAQ) can be answered using a notebook format. This should make it easier to move from example to application.

Our first few notebooks include:

How do I get started fast (Python)? [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/Quick_Start_Guide_to_ISB_CGC.ipynb]

How do I get started fast (R)? [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/Quick_Start_Guide_for_ISB-CGC.Rmd]

How do I plot a BigQuery result (Python)? [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_plot_BigQuery_results.ipynb]

How do I plot a BigQuery result (R)? [https://github.com/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_plot_BigQuery_results.Rmd]

How do I work with cloud storage (Python)? [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_work_with_cloud_storage.ipynb]

Stay tuned for more notebooks! And, we would love to hear from you! Have a notebooks you’d like to share with world, and attribution (!) , please send an email to dgibbs <at> systemsbiology <dot> org.

February, 2019

In this QoTM, we’ll look at the current open-access TCGA and TARGET datasets in BigQuery using R as our workspace. You can find in-depth descriptions of the BigQuery datasets in our documentation here: [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_BQ.html].

Note: You will need to have set up a Google Cloud Platform project to access/query the BigQuery tables in R, more info here: [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/gcp-info/gcp-info2/Setup.html].

Here’s our example case-study for month:

Your lab is interested in comparing the gene expression profiles of 2 non-coding RNAs, specifically the lncRNA ANRIL and the miRNA miRNA-21 across multiple cancer types. From the literature and your own research studies, expression of both ANRIL and. miRNA-21 have been implicated in many different cancer types.

In R:

	Let’s look at the currently available ISB-CGC BigQuery tables to find tables that will allow us to compare the expression profiles of the non-coding RNAs.

	Once identified, let’s query and explore the BigQuery tables that contain the information we need.

	Let’s generate an interactive scatterplot!

Let’s begin!

Within your R environment

install.packages("bigrquery")
install.packages("httpuv")
install.packages("ggplot2")
install.packages("reshape")
install.packages("scales")
install.packages("dplyr")

library(bigrquery)
library(httpuv)
library(ggplot2)
library(reshape)
library(scales)
library(dplyr)

##Let's investigate the publicly available ISB-CGC created TCGA and TARGET tables.
##There are a number of Level 3 datasets updated and available including:

#To list datasets associated with the ISB-CGC project in R:
list_datasets("isb-cgc")
[1] "CCLE_bioclin_v0" "GDC_metadata" "GTEx_v7" "QotM" "TARGET_bioclin_v0"
[6] "TARGET_hg38_data_v0" "TCGA_bioclin_v0" "TCGA_hg19_data_v0" "TCGA_hg38_data_v0" "Toil_recompute"
[11] "ccle_201602_alpha" "genome_reference" "hg19_data_previews" "hg38_data_previews" "metadata"
[16] "platform_reference" "tcga_201607_beta" "tcga_cohorts" "tcga_seq_metadata"

#Let's get the list of tables for the TCGA_hg38 dataset:
 list_tables("isb-cgc","TCGA_hg38_data_v0")
 [1] "Copy_Number_Segment_Masked" "Copy_Number_Segment_Masked_r14" "DNA_Methylation"
 [4] "DNA_Methylation_chr1" "DNA_Methylation_chr10" "DNA_Methylation_chr11"
 [7] "DNA_Methylation_chr12" "DNA_Methylation_chr13" "DNA_Methylation_chr14"
 [10] "DNA_Methylation_chr15" "DNA_Methylation_chr16" "DNA_Methylation_chr17"
 [13] "DNA_Methylation_chr18" "DNA_Methylation_chr19" "DNA_Methylation_chr2"
 [16] "DNA_Methylation_chr20" "DNA_Methylation_chr21" "DNA_Methylation_chr22"
 [19] "DNA_Methylation_chr3" "DNA_Methylation_chr4" "DNA_Methylation_chr5"
 [22] "DNA_Methylation_chr6" "DNA_Methylation_chr7" "DNA_Methylation_chr8"
 [25] "DNA_Methylation_chr9" "DNA_Methylation_chrX" "DNA_Methylation_chrY"
 [28] "Protein_Expression" "RNAseq_Gene_Expression" "Somatic_Mutation"
 [31] "Somatic_Mutation_DR10" "Somatic_Mutation_DR6" "Somatic_Mutation_DR7"
 [34] "miRNAseq_Expression" "miRNAseq_Isoform_Expression" "tcga_metadata_data_hg38_220818"
 [37] "tcga_metadata_data_hg38_250718"

 #So let's remember our use-case: We want to compare the gene expression profiles of our non-coding RNAs
 #of interest. ANRIL is a lncRNA and lncRNA expression is captured in the RNAseq_Gene_Expression table and miRNA-21 is
 #a miRNA_seq_Expression table. Let's find get our RNAs expression from their respective tables

 #To access and query the BigQuery tables, you'll need to first specify your project id:
 project <-"isb-cgc-02-0001"

 #Information about lnRNAs are in the gene expression tables..Let's compose a query on the RNAseq_Gene_Expression dataset
 #for the lncRNA dataset

 #query the RNAseq BigQuery table that has info for lncRNAs
 sql1<-"SELECT case_barcode, project_short_name, gene_name,HTSeq__Counts FROM `isb-
 cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression` WHERE Ensembl_gene_id = 'ENSG00000240498' ORDER BY
 project_short_name"
 data1 <- query_exec(sql1, project = project, use_legacy_sql = FALSE,max_pages = Inf)
 head(data1)

 #query the BigQuery miRNA expression table
 sql2 <-"SELECT project_short_name, case_barcode, mirna_id,read_count FROM `isb-cgc.TCGA_hg38_data_v0.miRNAseq_Expression` WHERE mirna_id = 'hsa-mir-21' ORDER BY project_short_name"
 data2 <- query_exec(sql2, project = project, use_legacy_sql = FALSE,max_pages = Inf)
 head(data2)

 #we can join these tables in BigQuery and have one datatable, we can also create 2 tables and merge them right here in R.
 #let's merge these two data tables here in R by case_barcode.
 merge_data = merge(data1,data2,by=c("case_barcode","project_short_name"))

 #The expression values were computed using different tools for the different datasets, so to compare the values we can #normalize using the rescale function in R.

 merge_data$HTSeq__Counts= rescale(merge_data$HTSeq__Counts,to=c(0,1))
 merge_data$read_count = rescale(merge_data$read_count,to=c(0,1))

 #Let's take a look at our merged table, we now have information for expression of the CDKN2B-AS1 and hsa-mir-21 for #almost 12,000 cases.
 head(merge_data)

 #We can create an interactive scatterplot plot using the function plotly in R to compare CDKN2B-AS1 and miRNA-21 #expression across multiple cancer types. This interactive plopt in R is called plotly.

 p <- ggplot(merge_data, aes((HTSeq__Counts), (read_count), colour=project_short_name)) + geom_point() + theme_classic() + theme(legend.position="none") + labs(x = "ANRIL normalized expression",y="miRNA-21 normalized expression")
 ggplotly(p)

January, 2019

Bam slicing in the cloud

This month we’re going to do some bam slicing in a cloud hosted jupyter notebook [https://colab.research.google.com].

Regarding bam slicing, ISB-CGC documentation can be found here [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/data2/data_in_GCS.html].

BAM files are central to almost all genomic analyses. Often, they are very large in size,
especially for larger genomes like the human genome. Researchers may only be interested in
small genomic regions, and so rather than download and deal with massive files, we can
extract or “slice out” subsections of the BAM file. The high performance HTSlib library (release 1.4+)
is used to manipulate high-throughput genomics data and is what allows
users to perform BAM-slicing. HTSlib is central to the SAMtools package, a popular tool
for NGS data manipulation http://www.htslib.org/doc/samtools.html .

In this post, we’ll be using a python wrapper for SAMtools called PySAM [https://pysam.readthedocs.io/en/latest/api.html].

In the Jupyter notebook (see link below), we demonstrate the following:

	How to invoke bash commands within a Jupyter environment.

	How to install packages/programs within a Jupyter environment

	How to use available BigQuery tables within ISB-CGC to query and identify Google Cloud Storage bucket locations for BAM files of interest

	How to use PySam to slice BAM files

	How to save slices in your bucket and retrieve them

	Brief example of working with reads

Link to the Jupyter notebook here [https://github.com/isb-cgc/examples-Python/blob/master/notebooks/isb_cgc_bam_slicing_with_pysam.ipynb] .

How to invoke bash commands within a Jupyter environment.

We’re finding the free jupyter notebooks offered from Google Colaboratory really useful and surprisingly flexible.
The level of access to the operating system is quite good and allows us to run bash commands to work on the file level.

To run a command, in your colaboratory notebook, create a cell like:

!ls -lha

That’s going to list out all the files in your environment.
The ‘bang’ (exclaimation point) signals to the notebook to run this command using bash.

Another useful command is

!env

Which prints out all the environment variables. This is useful in a lot of cases, such as compiling software.

How to install packages/programs within a Jupyter environment

To install a new linux library, create a new cell in your colaboratory python notebook and run:

!sudo apt-get install libxml2

How to use available BigQuery tables

In the notebook, there’s other ‘magic commands’ as well. Since it’s a Google product, it’s relatively straightforward to connect to other
Google products like BigQuery. This is really cool, because if the free colaboratory notebook is short on raw compute power,
BigQuery gives you the power of a cluster, and with the summary results you can do visualization and downstream analysis in the notebook.

To run an SQL query, we use some %%BigQuery magic

%%bigquery --project our-project-id df
SELECT * FROM `isb-cgc.TCGA_hg19_data_v0.tcga_metadata_data_hg19_18jul`
where
data_format = 'BAM'
AND disease_code = 'OV'
AND experimental_strategy = "WGS"
AND platform = 'ABI SOLiD'
LIMIT 5

Where ‘our-project-id’ is your google project id, and df is a variable that will store the results of the query.
In this query, we’re selecting all the available metadata for bam files (data_format = ‘BAM’) associated with
ovarian cancer (disease_code = ‘OV’). From a query like this, you can get a list of bam files stored in a
google cloud bucket, and slice out a section of reads from each.

Using Pysam to slice bams

Pysam is a python wrapper around SAMtools which uses the HTSlib [http://www.htslib.org/] in reading and processing bams.

In order to read out from GCS (cloud buckets), HTSlib needs to be compiled with some additional functionality.

export HTSLIB_CONFIGURE_OPTIONS="--enable-gcs"

Then, to slice out a region on chromosome 7 between 140453130-140453140, we would:

export GCS_OAUTH_TOKEN=`gcloud auth application-default print-access-token`

./samtools view gs://gdc-ccle-open/0a109993-2d5b-4251-bcab-9da4a611f2b1/C836.Calu-3.2.bam 7:140453130-140453140

In the python notebook, we do something very similar. We need to compile HTSlib gcs-enabled to read cloud-based files,
which in turn requires installing a few extra libraries. Then we would:

samfile = pysam.AlignmentFile('gs://gdc-ccle-open/0a109993-2d5b-4251-bcab-9da4a611f2b1/C836.Calu-3.2.bam', "rb")

for read in samfile.fetch('7', 140453130, 140453135):
 print(read)

samfile.close()

The AlignmentFile lets you fetch a AlignedSegment object, and you use that object to call many different methods.
You can see the full API here [https://pysam.readthedocs.io/en/latest/api.html#pysam.AlignedSegment].

For a couple quick examples of working with AlignedSegments, such as processing sequence data, check out the notebook [https://colab.research.google.com/drive/1ZaQ7TH0MEaiwSXqj1lTtdUS88Nv_uKpY#scrollTo=4RxAZ67mvHKk]!

How to save slices in your bucket and retrieve them

Once you have a list of slices for analysis, we can use all our Google cloud tools, like gsutil!

!gsutil ls gs://my_bucket_1/

Here we list out all the file in my bucket. We can also use gsutil to move items in and out of our notebook environment.

!gsutil cp my.bam gs://my_bucket_1/my.bam

That’s it for this month, please let us know if you have questions, or have topics you’d like to see covered in later months!

December, 2018

BigQuery Tips & Tricks

Last month, we transformed a typical genomics file type (the vcf file format) into a BigQuery table. This month, we’ll continue exploring how to load data into bigquery tables. Because genomics files are often very large in size, we’ll also explore some tricks on how to partition tables to query to save both money and time!

I. Loading CSV Data into BigQuery

First, let’s explore how to load csv files into big query. Here’s an example of a common use-case:

A lab with which your group collaborates is generating large amounts of RNAseq gene expression data. They have been following the nice analyses your group has done using BigQuery and would like you to help them perform similar analyses. Thus far, they have saved all of their RNAseq expression data into CSV format. They need your help first loading their RNAseq data files into BigQuery.

Here, we’ll learn how to load CSV files into BigQuery tables. We’ll accomplish this with some very useful bq command-line tools and arguments.

Before starting:

– This tutorial assumes that you’ve already created a GCP project. If you don’t already have one, instructions on how to set up one up can be found: here [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowToGetStartedonISB-CGC.html]

– Ensure that you have Google Cloud SDK installed

Loading CSV files into Google Cloud Storage

You can load local files as well as files from Google Cloud Storage (GCS). For this exercise, let’s make a GCS bucket to store our CSV files.

1. Make a bucket to store the RNAseq CSV

gsutil mb gs://RNAseq_CSVs

2. Copy the CSVs into your newly created storage bucket

gsutil cp *.csv gs://RNAseq_CSVs

Creating a BigQuery dataset

Creating tables and loading data via the BigQuery web-UI is good if
you’re only loading a small amount of data. It can be a tediously manual
process though if you have more than a handful of files. We can create
tables and load data using Google SDK’s handy bq tool. bq is a
python-based, command-line tool for BigQuery. https://cloud.google.com/bigquery/docs/bq-command-line-tool

Let’s create a dataset that will hold our RNAseq data:

bq mk RNAseq_data

If successful, you will get the following message:

Dataset 'Your_Project_ID:RNAseq_data' successfully created

You can also list all of the datasets associated with your project using
the following command:

bq ls

Generate schema for BigQuery table

A schema for a table is a description of its field names and types.
BigQuery allows you to specify a table’s schema when you load data into
a table. We can create a schema file in JSON format. You can find a
Python script (createSchema.py) to create a JSON schema for your
table in our github examples-Python repository.

https://github.com/isb-cgc/examples-Python/tree/master/python

Usage: python createSchema.py <input-filename> <nSkip>

where nSkip specifies the # of lines skipped between lines that are
parsed and checked for data-types; if the input file is small, you can
leave set nSkip to be small, but if the input file is very large, nSkip
should probably be 1000 or more (default value is 1000)

Loading Data in BigQuery

With the JSON schema file, we are now ready to load data into BigQuery.
The bq load command is used to load data in BigQuery via the
command-line.

usage:
bq --location=[LOCATION] load --source_format=[FORMAT] [DATASET].[TABLE] [PATH_TO_SOURCE] [SCHEMA]

 bq load \\

 --source_format=CSV \\

 --skip_leading_rows=1 \\

 RNAseq_data.expressionFile \\ # where it's going

 gs://RNAseq_CSVs/ExpressionDataTable.csv \\ # the table in a bucket

 ExpressionDataTable.csv.json # the table schema

You can verify that the table loaded by showing the table properties
with this command:

bq show RNAseq_data.expressionFile

II. BigQuery Table Clusters

The costs of using BigQuery center around how much of a table is read by
the query. So, the same query applied to a small table versus a very
large table will incur very different costs. It simply costs more to
query a large table! In the past, we broke tables into many subtables to
save costs and time. This was the case with the methylation tables where
the entire thing consisted of 3.9 Billion rows (932 GB)! It’s pretty
expensive to query that table, so we broke it into many tables by
chromosome. OK, but not entirely convenient to work with.

Now, there’s a fairly simple step to accomplish the same thing,
resulting in huge cost savings without changing your SQL or table
schema! They’re called ‘clustered tables’, which groups rows of your
BigQuery table so that your query only reads the appropriate portions of
your table. This means you can specify the cluster to be over
chromosomes, and your query will only read the portion of the table
associated with that chromosome. docs here [https://cloud.google.com/bigquery/docs/clustered-tables]

There’s a number of different ways to partition your tables. For one,
you can partition it at the time of ‘ingestion’. What that means is that
each time new data arrives, a new partition is created when the data is
appended to a new table.

So let’s look at an example using a table built from wikipedia (from
Optimizing BigQuery: Cluster your tables, by *Felipe
Hoffa* [https://medium.com/@hoffa?source=post_header_lockup]). This
uses a query to select-*-everything from the table, and cluster it by
wiki and title. The order matters in clusters (see notes below)!
Clustered tables also have to be applied to partitioned tables. Below
the table is being partitioned by a date.

CREATE TABLE `fh-bigquery.wikipedia_v3.pageviews_2017`

PARTITION BY DATE(datehour)

CLUSTER BY wiki, title

OPTIONS(
description="Wikipedia pageviews - partitioned by day,clustered by (wiki, title).
 Contact `*https://twitter.com/felipehoffa* <https://twitter.com/felipehoffa>`__",
 require_partition_filter=true)
AS SELECT * FROM `fh-bigquery.wikipedia_v2.pageviews_2017`
WHERE datehour > '1990-01-01' # nag

Now, Felipe notes:

	
	CLUSTER BY wiki, title: Whenever people query using the wiki

	column, BigQuery will optimize these queries. These queries will
be optimized even further if the user also filters by title. If
the user only filters by title, clustering won’t work, as the
order is important (think boxes inside boxes).

	
	require_partition_filter=true: This option reminds my users to

	always add a date filtering clause to their queries. That’s how I
remind them that their queries could be cheaper if they only
query through a fraction of the year.

To use a clustered table, just GROUP BY on the clustered columns, then
it’s done automatically. Most often, you’ll see a reduction in the
amount of data read, but you can also see where the runtime is reduced,
even if the amount of data read is the same.

SELECT wiki, title, SUM(views) views
FROM `fh-bigquery.wikipedia_v3.pageviews_2017`
WHERE DATE(datehour) BETWEEN '2017-06-01' AND '2017-06-30'
GROUP BY wiki, title
ORDER BY views DESC
LIMIT 10

without clustering

64.8s elapsed, 180 GB processed

with clustering

22.1 elapsed, 180 GB processed

So, in genomics data, this is an excellent technique to apply, and some
experimentation might be necessary to find the best clustering schema
for your work.

Let’s try this on the 1000 genomes table from last month. That was a
table of genomic data, produced from a VCF file from the Wellcome Trust
1000 Genomes project.

Earlier I had written a query to flatten the VCF table, we’ll use that
to partition, since some of the columns we’d like to use for
partitioning and clustering are nested fields, which are incompatible. I
saved that flat file to a new table ‘flat1000genomes’ with 2.7
Billion rows.

Partitioning tables (right now) only works with DATEs. So to get around
that, we’ll create a ‘fake date’

see here [https://stackoverflow.com/questions/51802482/my-data-can-t-be-date-partitioned-how-do-i-use-clustering/51829225#51829225].

CREATE TABLE
 `isb-cgc-02-0001.Daves_working_area.Clustered1000genomes`
PARTITION BY fake_date
CLUSTER BY chr, name
OPTIONS(
 description="1000 genomes partitioned by chr, cluster by call.name",
 require_partition_filter=true)
AS SELECT *, DATE('2018-12-14') fake_date FROM
 `isb-cgc-02-0001.Daves_working_area.flat1000genomes`

So here’s a query that counts up variants within samples.

SELECT chr, name, alt1, COUNT(alt1) AS n
FROM
`isb-cgc-02-0001.Daves_working_area.flat1000genomes`
GROUP BY chr,name,alt1
ORDER BY n ASC

Query complete (8.6s elapsed, 40.8 GB processed)

SELECT chr, name, alt2, COUNT(alt2) AS n
FROM `isb-cgc-02-0001.Daves_working_area.Clustered1000genomes`
WHERE fake_date is not NULL
GROUP BY chr, name, alt2
ORDER BY n ASC
LIMIT 10

Query complete (3.6s elapsed, 61.2 GB processed)

That’s more than 58% less time on ~50% more data!

November, 2018

Transforming VCF (DNA variants) files to BigQuery.

tldr; [https://gist.github.com/Gibbsdavidl/dc257e66867a5f3bb8a6c6f351a633c9]

Variant calls, as organized in vcf files, are central to almost all
genomics and bioinformatics analyses. As genomics datasets continue to
become larger in both size and complexity, as researchers we are often
faced with the scenario of having to gain biological insights from
hundreds and sometimes even thousands of VCF files at once. Google
Genomics has developed a tool for transforming and processing VCF files
in a scalable manner based on *Apache Beam* [https://beam.apache.org/] using
Dataflow [https://cloud.google.com/dataflow/] on the Google Cloud
Platform. Using this transform pipeline, one can load hundreds of
thousands of VCF files with millions of samples and billions of records
into BigQuery.

In the near future, ISB-CGC will make available controlled-access VCFs,
transformed into BigQuery tables, allowing users with approved
authorization to harness the power of BigQuery to conduct powerful
variant analyses. This month, we will explore variant analysis in
BigQuery. We transform a VCF into a BigQuery table and perform queries
to gain biological insights into variant data.

Here’s some helpful links:

*Loading and transforming VCF files into
BigQuery* [https://cloud.google.com/genomics/docs/how-tos/load-variants],

*Understanding the BigQuery Variants
Schema* [https://cloud.google.com/genomics/v1/bigquery-variants-schema],

*Variant Transforms
github* [https://github.com/googlegenomics/gcp-variant-transforms],

*Analyzing Variants in
BigQuery* [https://googlegenomics.readthedocs.io/en/latest/use_cases/analyze_variants/analyze_variants_with_bigquery.html]

To start, you’ll first need to configure your Cloud environment:

	A GCP project with billing

	Enable the *Cloud Genomics, Compute Engine, Cloud Storage, and Cloud
Dataflow
APIs* [https://console.cloud.google.com/flows/enableapi?apiid=genomics,storage_component,storage_api,compute_component,dataflow]

	An existing *BigQuery
dataset* [https://cloud.google.com/bigquery/docs/datasets] and a
*Cloud Storage
bucket* [https://cloud.google.com/storage/docs/creating-buckets].

Moving data into your GCS bucket:

If we have web addresses to the VCF files, we can use the cloud console
(or gcloud) to transfer files directly to our GCS bucket.

For this exercise, we use a vcf file of chromosome 21 from the public
1000 genomes project already in GCS into a bigquery table:
gs://genomics-public-data/1000-genomes-phase-3/vcf

VCF to BigQuery Transform:

The easiest way to run the VCF to BigQuery pipeline is to use the
docker [https://www.docker.com/] image and run it with the
*Google Genomics Pipelines
API* [https://cloud-dot-devsite.googleplex.com/genomics/pipelines] as
it has the binaries and all dependencies pre-installed.

Run the script below and replace the following parameters:

	GOOGLE_CLOUD_PROJECT: This is your project ID that contains the
BigQuery dataset.

	INPUT_PATTERN: A location in Google Cloud Storage where the VCF file
are stored. You may specify a single file or provide a pattern to
load multiple files at once. Please refer to the *Variant
Merging* [https://github.com/googlegenomics/gcp-variant-transforms/blob/master/docs/variant_merging.md]
documentation if you want to merge samples across files. The pipeline
supports gzip, bzip, and uncompressed VCF formats. However, it runs
slower for compressed files as they cannot be sharded.

	OUTPUT_TABLE: The full path to a BigQuery table to store the output.

	TEMP_LOCATION: This can be any folder in Google Cloud Storage that
your project has write access to. It’s used to store temporary files
and logs from the pipeline.

GOOGLE_CLOUD_PROJECT=your_project_id

INPUT_PATTERN=gs://Path_to_your_vcf_file

OUTPUT_TABLE=your_project_id:bq_dataset.bqtable

TEMP_LOCATION=gs://path_to_a_temp_folder

COMMAND="/opt/gcp_variant_transforms/bin/vcf_to_bq
 --infer_undefined_headers --allow_incompatible_records \\

 --project ${GOOGLE_CLOUD_PROJECT} \\

 --input_pattern ${INPUT_PATTERN} \\

 --output_table ${OUTPUT_TABLE} \\

 --temp_location ${TEMP_LOCATION} \\

 --job_name vcf-to-bigquery \\

 --runner DataflowRunner"

gcloud alpha genomics pipelines run \\

 --project "${GOOGLE_CLOUD_PROJECT}" \\

 --logging "${TEMP_LOCATION}/runner_logs_$(date+%Y%m%d_%H%M%S).log" \\

 --service-account-scopes https://www.googleapis.com/auth/cloud-platform **

 --zones us-central1-f \\

 --docker-image gcr.io/gcp-variant-transforms/gcp-variant-transforms **

 --command-line "${COMMAND}"

Note the operation ID returned by the above script. You can track the
status of your operation by running:

gcloud alpha genomics operations describe <operation-id>

The resulting transformed vcf table looks something like this:

[image: ../_images/BigQuery_VCF_preview.png]

What are all those empty cells? Well, when you upload a vcf file, the
schema automatically defines a lot of those fields as type:’Record’ that
have mode:’Repeated’. This is compared to more common data types like
‘Integer’ or ‘String’. A ‘Record’ or ‘Struct’ is a data structure that
brings related items together as a list or a nested set of lists. The
example given in the Google documentation is:

“In BigQuery, you can preserve the relationship between book and author
without creating a separate author table. Instead, you create an author
column, and you nest fields within it such as the author’s first name,
last name, date of birth, and so on. If a book has multiple authors, you
can make the nested author column repeated.”
https://cloud.google.com/bigquery/docs/nested-repeated

In our case, we have a single genomic position, and within that position
we can list different alternate variants. In the example, the reference
G is replaced by either an A or a C, and you can see this list in the
column names ‘alternate_bases.alt’, ‘alternate_bases.AC’, etc.

*Unnesting BigQuery tables to query repeated fields *

Querying multiple independently repeated fields or calculating the cross
product of such fields requires “flattening” of the BigQuery records. You
may have seen error messages like “Cannot query the cross product of
repeated fields …” from BigQuery in such scenarios. *Google
Genomics* [https://github.com/googlegenomics/gcp-variant-transforms/blob/master/docs/flattening_table.md]
describes the workarounds for enabling such queries and exporting a
flattened BigQuery table that can be directly used in tools that
required a flattened table structure (e.g. for easier data
visualization). BigQuery supports fields of type
ARRAY [https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#array-type]
for lists of values and fields of type
STRUCT [https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#struct-type]
for hierarchical values. These field types are useful for representing
rich data without duplication.

These type of tables can be pretty tricky, so…

*Let’s dive in with some examples! *

Colaboratory is a free Jupyter notebook environment that requires no
setup and runs entirely in the cloud! Colaboratory is a great way to
work on analysis projects with a group. A great feature is that BigQuery
takes all the heavy-duty compute to the cloud, and lets the notebook be
used for documentation and visualization. We’ve provided a notebook with
all code in shared Colab notebook here:

Just as with all Google Cloud Platform (GCP) products, to work with BigQuery in the Colaboratory notebook you must first set up a GCP Project. If you’re starting up a new account you can get $300 in credit, plus there’s a sizable amount of querying that’s free every month. Detailed instructions on how to set up a GCP project can be found here in our documentation:

https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowToGetStartedonISB-CGC.html

Once you’ve set up your GCP project, insert your project ID into code within the Colaboratory notebook.

When you create a GCP, a billing account will be attached to it. Any charges incurred by BigQuery are billed to the attached billing account even if you’re accessing data found in another project. Here’s some information on BigQuery costs. You can keep an eye on your GCP expenses in your Google Cloud Platform Console home page.

BigQuery Colab Notebook [https://gist.github.com/Gibbsdavidl/dc257e66867a5f3bb8a6c6f351a633c9]

Thank you! Please let know if you have any questions.

October, 2018

Jupyter notebooks and Dataproc clusters.

Switching gears from last month when we learned how to start the RStudio server in the Google cloud, this month we’ll
discover how to quickly start up a Jupyter notebook. Secondly we’ll make that notebook the front end of a Dataproc cluster, for some serious compute power.

In this tutorial we’ll be following these tutorials: jupyter notebook [https://cloud.google.com/dataproc/docs/tutorials/] and
Dataproc with GCP [https://codelabs.developers.google.com/codelabs/cpb102-dataproc-with-gcp/#3].

Jupyter notebooks [http://www.jupyter.org] are popular as a workspace in data science that makes it easy to share work. From the Jupyter site: “The notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.”

From Google: Google Dataproc [https://cloud.google.com/dataproc/] is a fast, easy-to-use, fully-managed cloud service for running Apache Spark and Apache Hadoop clusters in a simpler, more cost-efficient way. Operations that used to take hours or days take seconds or minutes instead, and you pay only for the resources you use (with per-second billing). Cloud Dataproc also easily integrates with other Google Cloud Platform (GCP) services, giving you a powerful and complete platform for data processing, analytics and machine learning.

Starting scripts

The first task is getting a VM up and running with Jupyter. Google has provided a set of bash scripts to make starting Jupyter notebooks more convenient.
You can find this project on github [https://github.com/GoogleCloudPlatform/dataproc-initialization-actions/tree/master/jupyter].
We will be passing the bucket address of the initialization script to gcloud dataproc clusters create to to all the needed installations on the VM.

Single node clusters

If you only want a single VM as the computational platform, then you can start a ‘single node cluster’.
Single node clusters have dataproc-role set to ‘Master’ and the dataproc-worker-count set to 0. Most of the initialization actions in this repository should work out of the box, as they run only on the master. Actions that run on all nodes of the cluster (such as cloud-sql-proxy) similarly work out of the box.

To create a single node cluster, we use the ‘gcloud dataproc clusters create’ command with a special argument ‘–single-node’.

gcloud dataproc clusters create <<args>> --single-node

Multinode clusters

But let’s suppose we’d like a few worker nodes, to start up that small cluster we use the command:

gcloud dataproc clusters create isb-dataproc-cluster-test2 \
 --metadata "JUPYTER_PORT=8124" \
 --initialization-actions gs://dataproc-initialization-actions/jupyter/jupyter.sh \
 --properties spark:spark.executorEnv.PYTHONHASHSEED=0,spark:spark.yarn.am.memory=1024m \
 --worker-machine-type=n1-standard-4 \
 --master-machine-type=n1-standard-4

This, init script jupyter2/jupyter2.sh uses python2, and jupyter/jupyter.sh uses python3.
In the metadata, it’s also possible to add JUPYTER_CONDA_PACKAGES=numpy:pandas:scikit-learn, but at the moment I’m getting some errors with those options.
Running that we get a return message..

Waiting on operation [projects/isb-cgc-02-0001/regions/global/operations/e2b39fb6-e139-3028-b7bc-33e1c1ca352b].
Waiting for cluster creation operation...done.
Created [https://dataproc.googleapis.com/v1/projects/my-project-123/regions/global/clusters/cluster-name-here] Cluster placed in zone [us-west1-b].

[image: ../_images/changes_on_the_vm.png]

Pay attention to the zone where the cluster lives!

Scaling Clusters

After creating a Cloud Dataproc cluster, you can scale the cluster [https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters] by increasing or decreasing the number of primary or secondary worker nodes in the cluster. You can scale a Cloud Dataproc cluster at any time, even when jobs are running on the cluster.

Because clusters can be scaled more than once, you might want to increase/decrease the cluster size at one time, and then decrease/increase the size later.

gcloud dataproc clusters update cluster-name \
 [--num-workers and/or --num-preemptible-workers] new-number-of-workers

Connecting to the notebook

This is actually one of the tricky parts.

Now that we have the VMs running, we need to connect our browser to the notebook (living in the cloud).

When using DataLab, one opens the network-connection to the notebook via the Google Cloud Console and Cloud shell in particular. However, here, we can’t use the cloud shell to open the Jupyter notebook because it uses a different ssh tunnelling system. This is a clear case where using DataLab is going to be easier in the Google ecosystem.

If you log into the cloud console, find Dataproc and click on your cluster, under the cluster name is a link that brings up the
commands to create an SSH tunnel to connect to a web interface.

Essentially, the two commands, ON A MAC, are:

gcloud compute ssh DATAPROC_CLUSTER_NAME-m \
 --project=GOOGLE_PROJECT_ID \
 --zone=ZONE -- -D 8124 -N \
 &

"/Applications/Google Chrome.app/Contents/MacOS/Google Chrome" \
 --proxy-server="socks5://localhost:8124" \
 --user-data-dir="/tmp/DATAPROC_CLUSTER_NAME-m" http://DATAPROC_CLUSTER_NAME-m:8124

The two commands, ON UBUNTU LINUX, are:

gcloud compute ssh DATAPROC_CLUSTER_NAME-m \
 --project=GOOGLE_PROJECT_ID \
 --zone=ZONE -- -D 8124 -N \
 &

/usr/bin/google-chrome \
 --proxy-server="socks5://localhost:8124" \
 --user-data-dir="/tmp/DATAPROC_CLUSTER_NAME-m" http://DATAPROC_CLUSTER_NAME-m:8124

note the ‘-m’ and putting it in the background with ‘&’
The first command opens an SSH tunnel to the server, and the second opens a browser window using
the correct proxy and port. Just replace DATAPROC_CLUSTER_NAME with the name you gave
your cluster in the gcloud dataproc clusters create call.

And that should open a chrome browser connection to Jupyter. Whew!

One more useful command is:

gcloud dataproc clusters describe ${DATAPROC_CLUSTER_NAME} ### this is just FYI ###

Now, there is a Google provided launch-jupyter-interface.sh script, but I had a lot of
issues with it. So I’m not sure I would recommend it yet.

Ready for work!

We can now create a new notebook. To make backups of our notebook, under the File menu, select ‘save as’, and here we can select one
of the cloud buckets associated with our project.

You can download the notebook I made here [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/source/sections/query_figs/OctoberQOTM.ipynb]

~~Let’s try some BigQuery!~~

For the first bit of code, we’ll import the libraries we need.

The python client library for the Google cloud can be found here [https://googleapis.github.io/google-cloud-python/latest/bigquery/index.html].

import sys
!{sys.executable} -m pip install --upgrade google-cloud-bigquery

import pandas as pd
from pandas.io import gbq

print("Imports run.")

OK! Next cell:

query_job = client.query("""
WITH
 table1 AS (
 SELECT
 project_short_name,
 case_barcode,
 IF (gender = 'FEMALE',
 1,
 0) AS F,
 IF (gender = 'MALE',
 1,
 0) AS M
 FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 WHERE
 project_short_name = 'TCGA-SKCM'
 GROUP BY
 project_short_name,
 case_barcode,
 gender)
 --
 --
SELECT
 project_short_name,
 SUM(F) AS F_count,
 SUM(M) AS M_count
FROM
 table1
GROUP BY
 project_short_name
""")

print('Running query...')
data = gbq.read_gbq(sql, project_id=projectId)

data

Ok, we run that cell, and notice it completes very quickly. Next we’ll write a cell
to get the results.

 for row in results:
print("{} : {} : {}".format(row.project_short_name, row.F_count, row.M_count))

“TCGA-BRCA : 1085 : 12”

Let’s change that query and get results for all types of cancer in TCGA.

query_job = client.query("""
 WITH
 table1 AS (
 SELECT
 project_short_name,
 case_barcode,
 IF (gender = 'FEMALE',
 1,
 0) AS F,
 IF (gender = 'MALE',
 1,
 0) AS M
 FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 GROUP BY
 project_short_name,
 case_barcode,
 gender)
 --
 --
 SELECT
 project_short_name,
 SUM(M) AS M_count,
 SUM(F) AS F_count
 FROM
 table1
 GROUP BY
 project_short_name
 """)

results = query_job.result()

[image: ../_images/data_frame_output.png]

OK, that’s working great. But what about Pandas you’re saying?

Well, it turns out we can do the same thing with the pandas and pandas-gbq libraries.

This is nice, because then we can use these summarized results in visualizations or in further analysis.

import matplotlib.pyplot as plt
plt.figure();
df2 = pandas.DataFrame(data_frame, columns=['M_count','F_count'])
df2.plot.bar();

[image: ../_images/matlab_plot_ms_fs.png]

OK, for the main work product here, we will define a cohort, save that cohort into a new BigQuery table (not download it!), and run a spark job that fits a model.

OK, to get started, I popped over to the BQ web interface and created a new dataset in my project: ‘spark_job’.

Then I’m created a table that’s going to be used for the spark job input.

SELECT
 sample_barcode AS sb,
 IF (project_short_name = 'TCGA-STAD', 1, 0) AS label,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'EGFR') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS'EGFR,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'TP53') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS TP53,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'NOTCH1') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS NOTCH1,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'GATA3') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS GATA3
FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
WHERE
 project_short_name IN ('TCGA-STAD','TCGA-BRCA')
 AND normalized_count IS NOT NULL
GROUP BY
 project_short_name,
 sample_barcode

[image: ../_images/spark_input_table.png]

This table is now found in my project at: isb-cgc-02-0001:spark_job.tcga_spark

PySpark

In this section, we’re working with the following examples:

	Get some data from BigQuery and perform some ML in spark [https://cloud.google.com/dataproc/docs/tutorials/bigquery-sparkml] .

	Also this description of the BigQuery connector to Spark [https://cloud.google.com/dataproc/docs/tutorials/bigquery-connector-spark-example] .

And here’s another resource <https://github.com/jadianes/spark-py-notebooks for working with python and spark in notebook environments.

There’s a special package we need to use in order to get our spark context from within a notebook. Typically, we would submit a job to spark using the PySpark interactive environment, or submit the job through the Google cloud console. But in the notebook we can use ‘findspark’ to connect with pyspark, and after that, instantiate our spark context.

!{sys.executable} -m pip install pyspark findspark

Then we can:

import findspark
findspark.init()

And now we’re ready to start coding our spark job. I have heavily borrowed from the examples above..

"""Run a logistic regression using Apache Spark ML.

In the following PySpark (Spark Python API) code, we take the following actions:

 * Load a previously created BigQuery input table
 into our Cloud Dataproc Spark cluster as an RDD (Resilient
 Distributed Dataset)
 * Transform the RDD into a Spark Dataframe
 * Vectorize the features on which the model will be trained
 * Compute a linear regression using Spark ML

"""

from datetime import datetime
from pyspark.context import SparkContext
from pyspark.ml.linalg import Vectors
from pyspark.ml.classification import LogisticRegression
from pyspark.sql.session import SparkSession

The imports, above, allow us to access SparkML features specific to linear
regression as well as the Vectors types.

Use Cloud Dataprocs automatically propagated configurations to get
the Cloud Storage bucket and Google Cloud Platform project for this
cluster.
sc = SparkContext()
spark = SparkSession(sc)
bucket = spark._jsc.hadoopConfiguration().get("fs.gs.system.bucket")
project = spark._jsc.hadoopConfiguration().get("fs.gs.project.id")

Set an input directory for reading data from Bigquery.
todays_date = datetime.strftime(datetime.today(), "%Y-%m-%d-%H-%M-%S")
input_directory = "gs:/input_directory = "gs://qotm_oct_2018" + todays_date

Set the configuration for importing data from BigQuery.
Specifically, make sure to set the project ID and bucket for Cloud Dataproc,
and the project ID, dataset, and table names for BigQuery.

conf = {
 # Input Parameters
 "mapred.bq.project.id": project,
 "mapred.bq.gcs.bucket": bucket,
 "mapred.bq.temp.gcs.path": input_directory,
 "mapred.bq.input.project.id": project,
 "mapred.bq.input.dataset.id": "spark_job",
 "mapred.bq.input.table.id": "tcga_spark",
}

Read the data from BigQuery into Spark as an RDD.
table_data = spark.sparkContext.newAPIHadoopRDD(
 "com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat",
 "org.apache.hadoop.io.LongWritable",
 "com.google.gson.JsonObject",
 conf=conf)

Extract the JSON strings from the RDD.
table_json = table_data.map(lambda x: x[1])

Load the JSON strings as a Spark Dataframe.
tcga_data = spark.read.json(table_json)

Create a view so that Spark SQL queries can be run against the data.
tcga_data.createOrReplaceTempView("tcga_view")

Define a function that collects the features of interest
Package the vector in a tuple containing the label (`label`) for that
row.
def vector_from_inputs(r):
 return (float(r["label"]), Vectors.dense(float(r['EGFR"]),
 float(r["TP53"]),
 float(r["NOTCH1"]),
 float(r["GATA3"])))

As a precaution, run a query in Spark SQL against the view to ensure no NULL values exist.
sql_query = """
SELECT *
from tcga_view
where label is not null
 and'EGFR is not null
 and TP53 is not null
 and GATA3 is not null
 and NOTCH1 is not null
"""
clean_data = spark.sql(sql_query)

Create an input DataFrame for Spark ML using the above function.
training_data = clean_data.rdd.map(vector_from_inputs).toDF(["label",
 "features"])
training_data.cache()

Construct a new LogisticRegression object and fit the training data.
https://spark.apache.org/docs/latest/ml-classification-regression.html#binomial-logistic-regression

lr = LogisticRegression(maxIter=5, regParam=0.3, elasticNetParam=0.8)
lrModel = lr.fit(training_data)
Print the model summary.
print("Coefficients:" + str(lrModel.coefficients))
print("Intercept:" + str(lrModel.intercept))

getting the model performance metrics
trainingSummary = lrModel.summary

Obtain the objective per iteration
objectiveHistory = trainingSummary.objectiveHistory
print("objectiveHistory:")
for objective in objectiveHistory:
 print(objective)

Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
trainingSummary.roc.show()
print("areaUnderROC: " + str(trainingSummary.areaUnderROC))

we can even convert the pyspark DataFrame to a Pandas DataFrame
and plot the ROC
import pandas
import matplotlib.pyplot as plt
plt.figure();
trainingSummary.roc.toPandas().plot.scatter('FPR','TPR')

If we take a look inside our named bucket, we see that data shards.

[image: ../_images/data_stored_in_shards.png]

Here’s what it looked like when I was running the natality example given by Google:

[image: ../_images/cluster_working_fig.png]

When we’re all done (it actually takes just an instant in this case), we have a model with an ROC of:

areaUnderROC: 0.9783191586648377

The coefficients from the model were:

Coefficients:[50.29267918772197,0.0,0.16224745918590844,-0.31689142394240727]
Intercept:-0.9932429393509908

So, it looks like only one gene was actually needed for the classification (EGFR).

Kill -9 the cluster

As with many other cloudy things, you can kill your cluster in the web console, on on the command line:

gcloud dataproc clusters update cluster-name \
 --graceful-decommission-timeout="timeout-value" \
 [--num-workers and/or --num-preemptible-workers]=decreased-number-of-workers
 other args ...

Hope that was helpful for getting started with Jupyter notebooks! Of course you don’t have to use clusters, there’s a lot you can do with a single node notebook! If you have some cool examples, I would love to see them!

September, 2018

R in the cloud.

Recently, I was asked to demonstate how to simply run an R script in the google cloud, so I decided to
revisit the topic and look for new, easy methods. In the past
I recommended methods like using dsub (link), which uses the Google Pipelines API. It’s still a good
option, but it can be challenging for some users to install and use. As an alternative, I have two new (to me) methods
that make running R scripts easy and straightforward.

Method 1

An RStudio server in the cloud

Super developer, Mark Edmondson (github: MarkEdmondson123), has released a number of very useful packages
for working in the Google cloud. However, I would advise to work from the development versions in github to
get the latest and greatest (see devtools::install_github).

These include:

	googleAuthR [http://code.markedmondson.me/googleAuthR/]

	googleComputeEngineR [https://github.com/cloudyr/googleComputeEngineR]

	googleCloudStorageR [https://github.com/cloudyr/googleCloudStorageR]

	bigQueryR [https://github.com/cloudyr/bigQueryR]

	Also a couple cloudyr tutorial links: massively parallel [https://cloudyr.github.io/googleComputeEngineR/articles/massive-parallel.html]

	and install and auth [https://cloudyr.github.io/googleComputeEngineR/articles/installation-and-authentication.html].

With these packages, it becomes super easy and fast to start up an RStudio server that can acess all
the resources within a google project (i.e. read and write to buckets, execute BigQueries).

After a little setup, starting the server is accomplished with a single function call! The setup involves getting a
project key. To do that, and you only need to do this once, you’ll log into your google cloud console.

Then, use the hamburger menu (upper left corner) to navigate to the ‘APIs and Credentials’ page. Find the create
credentials button, and select ‘Service account key’. Under service account, select ‘New service account’
and you can give it a name and an role in the project. For simplicity you can select the editor role, knowing it
has a great deal of permissions, which you may wish to scale back. When you hit the blue ‘create key’ button, a json
file will be downloaded. Guard that key with your life!

[image: ../_images/making_key_1.png]

[image: ../_images/making_key_2.png]

[image: ../_images/making_key_3.png]

OK.

Now, after starting up R, point your working dir to the directory holding your json key.

Sys.setenv("GCE_AUTH_FILE" = "~/tmp/auth.json") # edit path to your file
Sys.setenv("GCE_DEFAULT_PROJECT_ID"="MY PROJECT ID") # edit this
Sys.setenv("GCE_DEFAULT_ZONE"="us-west1-a") # edit this

library(googleComputeEngineR)

vm <- gce_vm("rstudio-cron-googleauthr",
 predefined_type = "n1-standard-1",
 template = "rstudio",
 dynamic_image = "gcr.io/gcer-public/google-auth-r-cron-tidy",
 username = "myname",
 password = "secretpassword321")

After calling this function, a message is printed: ‘2018-09-28 15:48:06> VM running’. What happened?
A new VM has been started using a docker image that contains Rstudio server and all of the tidyverse.
How do you get to it? Well, if we exampine the vm object in R, we see:

> vm
==Google Compute Engine Instance==

Name: rstudio-cron-googleauthr
Created: 2018-09-18 13:06:23
Machine Type: n1-standard-1
Status: RUNNING
Zone: us-west1-b
External IP: 35.199.153.108
Disks:
 deviceName type mode boot autoDelete
1 rstudio-cron-googleauthr-boot-disk PERSISTENT READ_WRITE TRUE TRUE

If we copy that External IP, and paste it into our browser. Viola!

[image: ../_images/rstudio_login.png]

After logging in, we get a full Rstudio environment.

To get a file into your VM [https://support.rstudio.com/hc/en-us/articles/200713893-Uploading-and-Downloading-Files],
the files panel in the lower right corner has an ‘Upload’ button that lets you select a file or dataset. To download,
in the same pane, select ‘More’ and ‘export’.

But what about reading and writing to your google bucket? To do that, we need to get the session authorized.
The RStudio instance, as started up with googleComputeEngineR, contains metadata about the project, and authorization
is performed using the googleAuthR package. See below for an example of working with buckets.

FROM WITHIN THE RSTUDIO ENVIRONMENT

first we load this library and call the authorization function
library(googleAuthR)
gar_gce_auth()

At this point, authorization is done, and a token has been created. The function outputs: “Token cache file: .httr-oauth”.

now we load up the cloud storage package and list the buckets
library(googleCloudStorageR)
googleCloudStorageR::gcs_list_buckets(projectId = 'isb-cgc-02-0001')

we can then pick a bucket
googleCloudStorageR::gcs_global_bucket("gibbs_bucket_nov162016")

we can also select the default bucket by setting a environment variable.
Sys.setenv("GCS_DEFAULT_BUCKET" = "gibbs_bucket_nov162016")

Now we’re ready to start accessing our buckets!

getting a list of objects in the default bucket
objects <- gcs_list_objects()

head(objects$name) # file names

save directly to an R object (warning, don't run out of RAM if its a big object)
the download type is guessed into an appropriate R object

parsed_download <- gcs_get_object(objects$name[4])

this was a .csv file, and it parsed into a tibble

or if you already know the name
parsed_download <- gcs_get_object("catter_input.txt")

if you want to do your own parsing, set parseObject to FALSE
and use httr::content() to parse afterwards
raw_download <- gcs_get_object("catter_input.txt",
 parseObject = FALSE)

Or move from a bucket to a file in your working directory
parseObject has no effect, it is a httr::content(req, "raw") download
gcs_get_object("catter_input.txt", saveToDisk = "catter_downloaded.csv")

Here's an example of getting text from a file in GCS
and parsing it to a data frame

textobj <- gcs_get_object("catter_input.txt")
df <- read.delim(textConnection(textobj), header=T, sep=" ", strip.white=TRUE)

Great, now to move files back to the bucket.

dat <- read.table('catter_downloaded.csv', header=T)
saved as cat_plot.png

attempt upload back to the bucket
upload_try <- gcs_upload("cat_plot.png")

You can see how easy it is to startup a new Rstudio server (takes just a few seconds)
and start reading and writing to buckets. When you’re done, you can stop the VM.

BACK ON YOUR LOCAL MACHINE

gce_vm_stop(vm)

However, you will still be charged for the attached disk, but this lets you resume your session anytime to
start where you left off. It’s also easy to just write out your files to the bucket,
and delete the VM, which is what I tend towards.

As a note: it’s very fast (and free as long as the VMs and buckets are in the same region)
to move data around in the google cloud.

Method 2

Running R functions on a cloud-based-cluster.

Next we’re going to start up a set of VMs, link them together as a cluster, and submit work to them.
We’re still going to use googleComputeEngineR to start up VMs, keeping them in a list, and
then using the future package to create the cluster [https://cran.r-project.org/web/packages/future/index.html].

	Here’s a couple cloudyr links: massively parallel [https://cloudyr.github.io/googleComputeEngineR/articles/massive-parallel.html]

	and install and auth [https://cloudyr.github.io/googleComputeEngineR/articles/installation-and-authentication.html].

library(googleComputeEngineR) ## using the dev version from github
library(future)

names for your cluster
vm_names <- c("vm1","vm2","vm3")

creates jobs that are creating VMs in background

jobs <- lapply(vm_names, function(x) {
 gce_vm_template(template = "r-base",
 predefined_type = "n1-standard-1",
 name = x,
 disk_size_gb = 15,
 wait = FALSE)
 })

Now, since we set wait = False, we call the function and then we get back control of the environment.

2018-09-28 17:23:11> Returning the startup job, not the VM instance.
2018-09-28 17:23:14> Returning the startup job, not the VM instance.
2018-09-28 17:23:16> Returning the startup job, not the VM instance.
>
> jobs
[[1]]
==Zone Operation insert : PENDING
Started: 2018-09-28 14:23:09
[[2]]
==Zone Operation insert : PENDING
Started: 2018-09-28 14:23:11
[[3]]
==Zone Operation insert : PENDING
Started: 2018-09-28 14:23:14

The ‘jobs’ object is a list, which we’ll convert to a list of VM objects. Then we can apply functions to that
list of VMs, in order to (for example) shut them all down.

wait for all the jobs to complete and VMs are ready
vms <- lapply(jobs, gce_wait)

get the VM objects
vms <- lapply(vm_names, gce_vm)

set up SSH for the VMs
vms <- lapply(vms, gce_ssh_setup)

Now for creating the cluster! This part is somewhat tricky, and at times seems to flop.
If the plan function doesn’t work, then just try again, the docker pulls already done
will not pull again. A lot of times it takes a couple tries.

This is a cool part(!): I’ve created my own small docker image and pushed it to docker hub. When
building the cluster, we’re able to start up those docker images in each VM in the cluster.
This gives us control over what software is present on each worker node.

The docker file is found at: https://hub.docker.com/r/gibbsdavidl/googlesmallr/

customise as needed, this for example sets shared RAM to 13GB
my_rscript <- c("docker",
 "run", c("--net=host","--shm-size=8G"),
 "gibbsdavidl/googlesmallr:latest",
 "Rscript")

create the cluster using custom docker image
plan(cluster,
 workers = as.cluster(vms,
 docker_image="gibbsdavidl/googlesmallr:latest",
 rscript=my_rscript)
)

OK, now the cluster should be alive and waiting for something to do. You can go and see the VMs in your
google cloud console, monitoring their workloads.

The (below) task will be to read a file from our bucket and report the size of the table.

test out if it's possible to access buckets.
work_chunks <- function(chunk){

 # first we'll get the worker node authorized
 require(googleAuthR)
 require(googleCloudStorageR)
 googleAuthR::gar_gce_auth()

 # then we'll point to the bucket
 gcs_global_bucket("gibbs_bucket_nov162016")

 # and get the object, read it, and report the dimensions.
 gcs_get_object("catter_input.txt", saveToDisk = "catter_downloaded.csv")
 dat <- read.table('catter_downloaded.csv', header=T)
 return(dim(dat))
}

We use the future_lapply to send this function to each VM.
system.time(
 result2 <- future.apply::future_lapply(vm_names, work_chunks)
)

user system elapsed
0.035 0.004 1.155

> result2
[[1]]
[1] 21 2

[[2]]
[1] 21 2

[[3]]
[1] 21 2

Great! In this example, I used the vm_names to iterate across, but it could
been a list of data files, or a list of parameter sets.

paramList <- list(
 P1=c(1,2,3), P2=c(4,5,6), P3=c(7,8,9)
)

result3 <- future.apply::future_lapply(paramList, work_chunks)

work_chunks would need an extra parameter in the argument list

I hope these examples help get you in the cloud! Please let me know if you have trouble or have questions.

August, 2018

Using BigQuery ML in a Shiny app.

Last month, we tried out the newly-released Google BigQuery ML.
This month we’ll continue to build examples, learn some new things, and build a shiny web app [https://isb-cgc.shinyapps.io/GoogML_Shiny/].

One newsworthy bit of information, incase you missed it a few months ago, is that the R package used for
interacting with BigQuery, bigrquery, has undergone a major revision
(hitting version 1.0.0 [https://github.com/r-dbi/bigrquery/releases/tag/v1.0.0]),
and many of the function calls have changed significantly.
The returned object from making a BigQuery call (with function ‘bq_project_query’) is now a “tibble” rather than a data frame.

Working with BigQuery ML is quite a bit different than what we’ve done before. In the past, when working with BigQuery, we’ve computed
different statistics, and we’ve even used those statistics for classification, but that work was all done in the SQL – including,
for example, formulating a Z-score in SQL.
Now, most of our work will go into preparing the training data table to be used when fitting the model.

When fitting models, we have two important parameters to think about: the L1 and L2 regularization rates.
(There are other parameters, but we’ll focus on these for the moment.)
Both of these parameters effectively push the weights of less useful predictors towards zero. L2 (or euclidean norm) will push
weights towards zero, but L1 regularization will make variable (gene) weights exactly zero. Using these regularizers
can help us get an idea of which features (eg genes) are most useful in separating groups (eg cancer types).

A good tool for getting a feel for what parameter values to use can be found
here [https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/playground-exercise].

In this Shiny App, we will select two “cohorts” as the two groups for our classification task.
Then we’ll select one of the cancer hallmark gene sets from MSigDB which will provide the feature set as a list of genes.
The BigQuery ML models take a number of parameters, so we’ll make those available to the user as well.

In general, when storing a gene-expression matrix in BigQuery, it is most useful to store it as a
tidy [http://vita.had.co.nz/papers/tidy-data.html] data table, ie a “long” table with just 3 columns:
sample_id, gene_id, expression_value,
rather than a “wide” N x M table for N samples and M genes, in which the expression values for each gene are stored in a specific column.

However, when you want to fit a model with 10 variables,
you will need a table with 10 columns. To do that we’ll need a new BigQuery skill! Converting long-to-wide tables.
There’s two keys to doing it in BigQuery. The first is to programmatically construct the query string,
given the list of genes and other relevant information (eg the cohort name), and the second is to use an
aggregate function [https://cloud.google.com/bigquery/docs/reference/standard-sql/aggregate_functions]
to create each row of the result table, where each row will represent a single sample.

Here’s a small example of doing that.

SELECT
 sample_barcode AS sb,
 project_short_name AS label,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'FRMD6') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS FRMD6,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'MMD') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS MMD,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'IMPDH2') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS IMPDH2,
 SUM (CASE
 WHEN (HGNC_gene_symbol = 'SNORD60') THEN LOG10(normalized_count +1)
 ELSE (RAND()/1000000) END) AS SNORD60
FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
WHERE
 project_short_name = 'TCGA-STAD'
 AND normalized_count IS NOT NULL
GROUP BY
 project_short_name,
 sample_barcode

Keen readers will notice that I’ve included a call to RAND() when the gene symbol is not matched.
The reason is that some genes in the gene lists do not map to data in TCGA.
This creates a column of all zeros across samples, and causes an error in the model fitting. To get around that, I’ve
added a very small amount of noise to the data. If the gene is not present in TCGA’s annotation, it is represented
as random noise and will not contribute to the model.

Now we’ll get to building the shiny app. Here’s the first couple functions to build up the SQL as a string.
I put these SQL query-string building functions in a global.R file that gets imported in the server.R code.
Then I make the query executions from an eventReactive function which is called when the user clicks on the submit button.

geneQuery <- function(gi) {
 # This function gets called for each gene in a list.
 # gi is the name of a gene as a string
 paste("SUM (CASE WHEN (HGNC_gene_symbol = '",gi,"') THEN normalized_count ELSE (RAND()/1000000) END) AS ", gi, sep='')
}

buildDataSQL <- function(geneNames, cohort1, cohort2, ngenes) {

 # here we can control the number of genes going into the model
 if (length(geneNames) > ngenes) {
 geneNames <- sample(geneNames, size = ngenes, replace = F)
 }

 # create model name // format the sys.time() return
 # to put in underscores and remove colons
 # and paste in the cohort names.
 modelname <- getModelname(cohort1, cohort2)

 q <- paste("
 WITH
 C1 AS (
 SELECT
 sample_barcode AS sb,
 project_short_name AS label,\n",
 paste(sapply(geneNames, function(gi) geneQuery(gi)),collapse = ',\n'), "\n
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 project_short_name = '",cohort1,"'
 AND normalized_count IS NOT NULL
 GROUP BY
 project_short_name,
 sample_barcode),

 C2 AS (
 SELECT
 sample_barcode AS sb,
 project_short_name AS label,\n",
 paste(sapply(geneNames, function(gi) geneQuery(gi)),collapse = ',\n'), "\n
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 project_short_name = '",cohort2,"'
 AND normalized_count IS NOT NULL
 GROUP BY
 project_short_name,
 sample_barcode)

 SELECT
 0 AS label,",
 paste(geneNames,collapse = ','), "\n
 FROM
 C1
 UNION ALL
 SELECT
 1 AS label,",
 paste(geneNames,collapse = ','), "\n
 FROM
 C2
 ", sep = '')

 print(q)
 return(list(SQL=q, Dataset="tcga_model_1", Tablename=paste("isb-cgc-myproject123.tcga_model_1.data", Modelname=modelname,sep="")))
 }

Calling this function returns the SQL query string, the Dataset where the table will be placed, the full name
‘project.dataset.tablename’, and the modelname, all as a list.

The R code to create the query string, authenticate, and execute the query only takes a few lines:

we've saved our service account token in the data directory
service_token <- set_service_token("data/ISB-CGC-myproject-1234567.json")

previously I made a hash keyed on gene set names, to get the list of gene members
load("data/gene_set_hash.rda")
geneNames1 <- geneSets[[setname]]

then we build the string using the above code.
datasql <- buildDataSQL(geneNames1, input$cohortid1, input$cohortid2, input$n_genes)

and we execute the query, explicitly naming the location where it will be saved
res0 <- bq_project_query('isb-cgc-myproject123', datasql[["SQL"]], destination_table = datasql[["Tablename"]])

At this point we’ve generated the dataset and saved it in a BigQuery dataset. The next step is to fit the model.
We’ll construct another query string and execute it.

buildModelSQL <- function(datasetname, tablename, modelname, input) {

 l1reg <- input$l1_reg
 l2reg <- input$l2_reg
 maxit <- input$max_iterations
 lr <- input$learn_rate
 es <- input$early_stop

 q <- paste(
 "CREATE MODEL `", datasetname ,".", modelname, "`
 OPTIONS(model_type='logistic_reg', l1_reg=",l1reg,", l2_reg=",l2reg,", max_iterations=",maxit,")
 AS SELECT * FROM `", tablename ,"`
 ",sep="")

 print(q)
 return(list(SQL=q, Modelname=paste(datasetname ,".", modelname,sep='')))

}

then build the model
the datasql is returned from building the dataset query above
modSql <- buildModelSQL(datasql[["Dataset"]], datasql[["Tablename"]], as.list(input))
res1 <- bq_project_query('isb-cgc-myproject123', modSql[["SQL"]])

When the model fit is finished, we will query the model, rather than a table, to get information about the goodness-of-fit, and
other classification metrics.

queryModelTrainingSQL <- function(modelname) {
 q <- paste(
 "SELECT
 *
 FROM
 ML.TRAINING_INFO(MODEL `",modelname,"`)
 ",sep="")
 print(q)
 return(list(SQL=q))
}

queryModelFeaturesSQL <- function(modelname) {
 q <- paste(
 "SELECT
 *
 FROM
 ML.FEATURE_INFO(MODEL `",modelname,"`)
 ",sep="")
 print(q)
 return(list(SQL=q))
}

queryModelWeightsSQL <- function(modelname) {
 q <- paste(
 "SELECT
 processed_input,
 weight
 FROM
 ML.WEIGHTS(MODEL `",modelname,"`)
 ",sep="")
 print(q)
 return(list(SQL=q))
}

queryModelROCSQL <- function(modelname, tablename) {
 q <- paste(
 "SELECT
 threshold,
 false_positive_rate,
 true_positives,
 false_positives,
 true_negatives,
 false_negatives,
 recall,
 true_positives / (true_positives + false_positives) AS precision
 FROM
 ML.ROC_CURVE(MODEL `",modelname,"`, TABLE `", tablename ,"`)", sep='')
 return(list(SQL=q))
}

and then we call all the query contruction functions and collect the performance of the classifier.

First, using the queryModelTrainingSQL function above, we get information about the model training, which is really useful.
It will show a number of training iterations, where in each iteration, there’s a learning rate. When a model is fitting well,
you should see a big jump in the magnitude of the learning rate.
Also it needs to train for a number of iterations. In unsuccessful fittings, the
model will not progress beyond just a few iterations.
Here is the Google training module [https://developers.google.com/machine-learning/crash-course/reducing-loss/an-iterative-approach] on this topic.

Second, we can get information about the features themselves, such as the mean and quartiles for each gene.

Finally, one of the most important calls will be to get the feature weights. Since this is a regularized regression, which is
controlled using the L1 and L2 parameters, variables that are less helpful in the classification will have weights that
will shrink to zero. We show the weights in an absolute value sorted order.

In supervised machine learning,
each sample has a known label. In this example, the label is the tissue type.
When the model is used to predict a label for a sample, we will either
get it right or get it wrong. We can call the label of the sample either ‘cohort 1 positive’ or ‘cohort 1 negative (i.e. cohort 2 positive).
Then our model makes a prediction on whether the sample is ‘cohort 1 positive’ or not, making it a boolean value (true or false).

To determine if our model is doing well, we use classification metrics like recall and precision.
Precision is the fraction of true positives over combined true and negative positives.
Recall (or sensitivity) is the fraction of true positives over all positives. So when precision
is very close to 100%, then there were very few false positives. When recall is close to 1, almost all of the positive cases were
correctly called positive.

To put it another way, from Wikipedia: “In a classification task, a precision score of 1.0 for a class C means that every item labeled as belonging to class C does indeed belong to class C (but says nothing about the number of items from class C that were not labeled correctly) whereas a recall of 1.0 means that every item from class C was labeled as belonging to class C (but says nothing about how many other items were incorrectly also labeled as belonging to class C). … Often, there is an inverse relationship between precision and recall, where it is possible to increase one at the cost of reducing the other.”

Below is the R code for the “server” component of our Shiny app. We want all of the bigrquery functions to be
called when the user clickson the ‘submit’ button – to accomplish this, we wrap all of the functions together
in a eventReactive.

Once it’s all wrapped in a the eventReactive, we can access the results of all the queries repeatedly without
having to redo any of the queries.

Let’s take a look at an example. You can of course try the app here [https://isb-cgc.shinyapps.io/GoogML_Shiny/].

First we have the UI where we can pick our cohorts, the number of genes to use, the regularization rates, and a maximum
number of iterations.

[image: ../_images/qotm_aug_fig1.png]

Then we see the name of the model (and data) which can be found in the Google BigQuery web interface. Also we see the precision-recall
curve.

[image: ../_images/qotm_aug_fig2.png]

Next we have the metrics that are found when using the threshold that maximizes the F-score.

[image: ../_images/qotm_aug_fig3.png]

Then we have the list of features (genes) with the model weights.

[image: ../_images/qotm_aug_fig4.png]

Finally, we have the record of iterative model fitting.

[image: ../_images/qotm_aug_fig5.png]

That’s it for this month. I hope you found this informative, and can see how to integrate model building and
exploration within an interactive web environment. This sort of tool would allow anyone with some familiarity
of gene sets and TCGA to build and reason about models. And we think that’s pretty cool!

July, 2018

First look: BigQuery ML.

Exciting news! Google has just released a beta feature in BigQuery: Machine Learning (ML)! There are two availble model types,
linear and logistic. The first, linear regression, models a continuous variable given a selection of variables, both categorical
(eg US postal code) and numeric (eg height or weight). The second, logistic regression, models a binary label given some variables.
This is used for classification between two groups, which we have used extensively in this blog.
An example of groups we created had features like ‘does or does not have a mutation in GATA3’.
Even better, the logistic regression is regularized!
We have both L1 and L2 regularization available [https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization],
which makes it similar to an implementation of elasticnet.

In the following examples, I’m going to be working in the BigQuery web interface, but it’s also possible to train and apply these models using
the command line tool (bq), the REST API, and from a scripting language (R or python).

The introductory documentation can be found here [https://cloud.google.com/bigquery/docs/bigqueryml-intro].

Something people are always concerned about: how much does it cost?! Well, from reading the docs, at this time (July 2018) pricing is still
under development. But essentially it’s similar to any other query. You’re charged according to how much data is processed in training the model
and storage fees for the model (first 10GB free). However, the actual data read for training the model is more than just the size of the table.
It’s not entirely clear at this point, but when I learn more, I’ll report it.

[image: ../_images/bq_ml_costs.png]

Something kind of amazing (doc link [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create]):
If you’re using a categorical variable, the variable is split into a number of columns, one for each category-element.
This is called one hot encoding [https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding].
For example, we might have two columns from our
mutation status category: has-GATA3-mutation, no-GATA3-mutation. That’s only 2 categories, so 2 columns of binary variables.
But, if you have many, many, many more categories, those get split into columns too.
From the docs: “When you use a CREATE MODEL statement, the size of the model must be 90 MB or less or the query fails.
Generally, if all categorical variables are short strings, a total feature cardinality (model dimension) of 5-10 million is supported.
The dimensionality is dependent on the cardinality and length of the string variables.” WOW! That’s a lot of columns.

Let’s jump in! The first task will be to classify a couple of cancer types (by tissue) using gene expression data
for 4 specific genes.

First I’m going to create a new data set to hold the training data and models. To create a new dataset, click on the
blue down-arrow next to your project ID in the left side-panel of the
web UI [https://bigquery.cloud.google.com]), and select “Create new dataset”. I called it ‘tcga_model_1’.

[image: ../_images/make_dataset.png]

I’ve selected ‘TCGA-COAD’ (colon cancer) and ‘TCGA-PAAD’ (pancreatic cancer) as my two cancer types.
They’re really pretty different, so it shouldn’t be a difficult classification challenge.

Below, we use a Standard SQL query to create the training data, which we then save as
a table in the dataset created above.

-- For each gene, we'll make a subtable named C1-C4.
-- You can see where we select the gene in the WHERE section.

With

C1 AS (
SELECT
 project_short_name AS label,
 sample_barcode,
 HTSeq__FPKM_UQ CCNE1
from
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name IN ('TCGA-COAD','TCGA-PAAD')
 and gene_name='CCNE1'
),

C2 AS (
SELECT
 project_short_name AS label,
 sample_barcode,
 HTSeq__FPKM_UQ CDC6
from
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name IN ('TCGA-COAD','TCGA-PAAD')
 and gene_name='CDC6'
),

C3 AS (
SELECT
 project_short_name AS label,
 sample_barcode,
 HTSeq__FPKM_UQ MDM2
from
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name IN ('TCGA-COAD','TCGA-PAAD')
 and gene_name='MDM2'
),

C4 AS (
SELECT
 project_short_name AS label,
 sample_barcode,
 HTSeq__FPKM_UQ TGFA
from
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name IN ('TCGA-COAD','TCGA-PAAD')
 and gene_name='TGFA'
)

-- Now we join the above gene-tables into our training data.

SELECT
C1.label AS label,
C1.sample_barcode AS sample_barcode,
 CCNE1,
 CDC6,
 MDM2,
 TGFA
FROM
C1
JOIN C2 ON C1.label=C2.label AND C1.sample_barcode=C2.sample_barcode
JOIN C3 ON C1.label=C3.label AND C1.sample_barcode=C3.sample_barcode
JOIN C4 ON C1.label=C4.label AND C1.sample_barcode=C4.sample_barcode

I ran the above query, and when done, clicked the ‘Save to Table’ button, placing it in the ‘tcga_model_1’ dataset.
Now we’re ready to train a model, which we’ll do using the
CREATE MODEL [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create] statement.
(You will need to modify the CREATE MODEL statement below to use your project and dataset names.)

#standardSQL
CREATE MODEL
 `isb-cgc-02-00001.tcga_model_1.coad_vs_paad_expr_l1_l2` -- the name of our model, project.dataset.model_name
OPTIONS
 (model_type='logistic_reg', -- various options for the model
 l1_reg=1, l2_reg=1) AS
SELECT
 label, -- here you define the training data
 CCNE1, -- it's possible to give it a random subset
 CDC6, -- see the next query for that.
 MDM2,
 TGFA
FROM
 `isb-cgc-02-0001.tcga_model_1.paad_coad_expr_2`

The model training should take a minute or two, and once complete you will now have a
“Model” in your dataset (identified in the webUI using a green icon which is different
from the blue one we are used to seeing next to tables).
You can click on this model to see information about it, along with new buttons such
as “Query Model” and “Training Stats”:

[image: ../_images/4gene_model_specs.png]

Looking at the “Training Stats” will give you a sense of how the training process went.
Each row in the Training Stats table represents a single iteration, with the following
four pieces of information:

	training data loss: loss metric on the training data, calculated after this training iteration

	evaluation data loss: loss metric computed on the held-out data

	learn rate: hyper-parameter which controls how fast the model weights are adjusted (how this value is determined will depend on the learn_rate_strategy specified in the CREATE MODEL statement)

	completion time (sec)

When the model’s fit is not improving, the training will end early (you can turn this feature off).
I found that models that were not doing well, tended to end after just about four rounds, with
high training data loss (~0.45). Also, when models are doing well, you should see the learning rate
really ramp up, otherwise the model is ‘not getting any traction’.

[image: ../_images/4gene_model_stats.png]

	Once we have created a model, we have a few options of what to do with it:

	
	evaluation functions: ML.EVALUATE [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate] and ML.ROC_CURVE [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-roc] (which only applies to logistic regression models)

	prediction function: ML.PREDICT [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-predict]

	inspection functions: ML.TRAINING_INFO [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-train], ML.FEATURE_INFO [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-feature], and ML.WEIGHTS [https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-weights]

Below is an example “query” showing how to use the ML.EVALUATE function: here I am evaluating the model on a random subset (half) of
the data that I used to train the model. (In a more rigorous scenario, you would of course either do cross-fold validation
or evaluate on a subset of the data that was not used at all during training.)

#standardSQL
SELECT
 *
FROM
 ML.EVALUATE(MODEL `isb-cgc-02-0001.tcga_model_1.coad_vs_paad_expr_l1_l2`, (
SELECT
 label,
 CCNE1,
 CDC6,
 MDM2,
 TGFA
FROM
 `isb-cgc-02-0001.tcga_model_1.paad_coad_expr_2`
WHERE
 RAND() < 0.5
)
)

[image: ../_images/4gene_roc.png]

One last thing, we can get the weights (or model coefficients) by again querying the model.

SELECT
 *
FROM
 ML.WEIGHTS(MODEL `isb-cgc-02-0001.tcga_model_1.coad_vs_paad_expr_2`)

[image: ../_images/4gene_model_weights.png]

From the magnitude of the weights, we can see that CDC6 was very useful, but MDM2 wasn’t.
It’s a great way of testing the use of each variable for the particular problem at hand.

Neat! Let’s do one more example, this time using the somatic mutation data for
a couple of well-known genes (above we used gene expression data).
For this training data, I’m going to do a little
feature engineering [https://en.wikipedia.org/wiki/Feature_engineering]
(see also this [https://developers.google.com/machine-learning/crash-course/representation/feature-engineering]).
Our “engineering” will simply consist of combining two columns to create a new “feature”.

One tricky aspect of working with the somatic mutation data table is that the table only contains rows describing
observed somatic mutations. The lack of a mutation at a particular position in a gene, for a particular sample,
is only implied by the lack of such a row in the table. It is also possible that a mutation occurred but was
missed by the sequencing or the mutation-calling pipeline. We will assume, however, that all samples that are
mentioned at least once in the table can be assumed to have been “tested” for all of the mutations that are present
in the table.
We will therefore start with a list of all of the samples we are interested in, and then join in the mutation
data using a LEFT JOIN, which will retain all of the same barcodes.
At the end, after selecting for a number of different genes, we join subtables for each
gene of interest.

WITH

-- First we make a table with all barcodes for the two cancer types.
-- (This table will have 579 rows, one per tumor sample.)
all_barcodes AS (
SELECT
 project_short_name AS label,
 sample_barcode_tumor AS barcode
FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
WHERE
 project_short_name IN ('TCGA-COAD', 'TCGA-PAAD')
GROUP BY 1, 2),

-- Then we make a table of mutations, concatenating strings into new features.
-- For now, we'll do this only for the APC gene, but we could easily
-- add more genes or change the gene being tested for.
--
-- This table will have 444 rows, describing APC mutations in 313 tumor samples.
-- For example, sample TCGA-AA-A010-01A has 3 mutations, TCGA-AA-AA017-01A has one,
-- and TCGA-AA-A01P-01A has none and is not present in this table.
apc_mut AS (
SELECT
 project_short_name AS label,
 sample_barcode_tumor AS barcode,
 CONCAT(Hugo_Symbol, ' Mut') AS Variant,
 CONCAT(Hugo_Symbol, ' ', Variant_Classification) AS Variant_Classification,
 CONCAT(Hugo_Symbol, ' ', Variant_Type) AS Variant_Type
from
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
WHERE
 project_short_name IN ('TCGA-COAD','TCGA-PAAD') AND Hugo_Symbol='APC'
GROUP BY 1, 2, 3, 4, 5),

-- Left Join all the barcodes, with barcodes that have mutation data.
apc_join AS (
SELECT
 b.label,
 b.barcode,
 m.Variant AS apc,
 m.Variant_Classification AS apcvarclass,
 m.Variant_Type AS apcvartype
FROM
 all_barcodes b
LEFT JOIN
 apc_mut m
ON
 b.barcode=m.barcode AND b.label=m.label
GROUP BY 1, 2, 3, 4, 5),

-- Finaly, we do need to replace the NULL values since the ML functions
-- cannot be trained with NULL values
apc_final AS (
SELECT
 label, barcode, apc, apcvarclass, apcvartype
FROM
 apc_join
WHERE
 apc IS NOT NULL
UNION ALL
SELECT
 label, barcode,
 "APC WT" AS apc,
 "APC WT" AS apcvarclass,
 "APC WT" AS apcvartype
FROM
 apc_join
WHERE
 apc IS NULL)

So, if a sample doesn’t have a mutation in APC, the nulls are replaced with the
“APC WT” strings, and otherwise, the features specify the mutation class and type, eg:

Row label barcode apc apcvarclass apcvartype
1 TCGA-COAD TCGA-AD-6965-01A APC WT APC WT APC WT

-- But if you select a tumor with a mutation in APC you get:

1 TCGA-COAD TCGA-AA-A010-01A APC Mut APC In_Frame_Del APC DEL
2 TCGA-COAD TCGA-AA-A010-01A APC Mut APC Nonsense_Mutation APC SNP
3 TCGA-COAD TCGA-AA-A010-01A APC Mut APC Intron APC SNP

Let’s repeat the above, but this time with KRAS, and then join the two results
so that we have data for both KRAS and APC.
We will save this table in our new dataset with the name apc_kras_data.
(The apc_join table should have 710 rows
containing information for 579 barcodes, and the kras_join table should have 589 rows
containing information for the same 579 barcodes. Joining these two will produce
a table with 721 rows. 105 of these rows represent tumor samples with no mutations
in either APC or KRAS; 167 rows represent tumor samples with mutations only in KRAS;
223 rows represent tumor samples with mutations only in APC; and finally 226 rows
represent samples with mutations in both APC and KRAS.)

SELECT
 k.label, k.barcode,
 apc, apcvarclass, apcvartype,
 kras, krasvarclass, krasvartype
FROM
 kras_final k
JOIN
 apc_final a
ON
 k.label=a.label AND k.barcode=a.barcode

Then we create our model:

#standardSQL
CREATE MODEL `isb-cgc-02-0001.tcga_model_1.apc_kras_model`
OPTIONS(
model_type='logistic_reg', l1_reg=1, l2_reg=1
) AS
SELECT
 label,
 apc, apcvarclass, apcvartype,
 kras, krasvarclass, krasvartype
FROM
 `isb-cgc-02-0001.tcga_model_1.apc_kras_data`

and we can evaluate it:

#standardSQL
SELECT
 *
FROM
 ML.EVALUATE(MODEL `isb-cgc-02-0001.tcga_model_1.apc_kras_model`, (
SELECT
 label,
 apc, apcvarclass, apcvartype,
 kras, krasvarclass, krasvartype
FROM
 `isb-cgc-02-0001.tcga_model_1.apc_kras_data`
WHERE
 RAND() < 0.5
)
)

[image: ../_images/apc_kras_roc.png]

Let’s take a look at the model weights. Our model wound up having 20 weights:
11 for APC-related features and 9 for KRAS-related features, and it is clear that
the APC-related features are the most informative for this particular task.

SELECT
 w.category, w.weight
FROM
 ML.WEIGHTS(MODEL `isb-cgc-02-0001.tcga_model_1.apc_kras_model`),
 UNNEST(category_weights) AS w
GROUP BY 1, 2
HAVING
 category LIKE "APC%"
ORDER BY
 ABS(weight) DESC

[image: img_w1] [image: img_w2]

OK, pretty cool! We see some of the features have very little information and have
weights of zero (or close to zero) like ‘APC Silent’ or most of the KRAS-related features,
while others seem very important. You could test this by removing a specific feature from your
input data, and then checking to see if the model statistics change.

Overall, that seems pretty useful!
Of course, BigQuery ML is in beta, and our experiance with Google products: expect things to change!
Have you found any good tricks? If you have, please share them via email or on twitter (@isb-cgc)!

June, 2018

Processing bam files using WDL, scatter, and Cromwell

In the last two editions, we’ve described a multi-step workflow for generating statistics from bam files (from ENCODE) using the
common workflow language (CWL). This month, we’ve translated the example to WDL (workflow description language) [https://software.broadinstitute.org/wdl/]
and moved to executing the workflow using Cromwell [http://cromwell.readthedocs.io/en/develop/], a ‘workflow management system’ that can operate in the Google cloud.

So again, starting with a collection of bam files, we’re going to bin sequence reads by GC content, and produce a single
output file summarizing all the input files.

Using the same dockerized tools as last time (tool reuse!) [https://hub.docker.com/r/biocontainers/samtools/] , we’re
going to be using Cromwell to run the workflows. You can find installation instructions here [http://cromwell.readthedocs.io/en/develop/].
Also install ‘womtool’, availble in the same location as cromwell.

The plan:

	compute some statistics over a list of bam files with samtools

	use grep to parse out a portion of the stats output

	use cut to process columns from the output

	use cat to gather the outputs into a single file

Each of these steps is now defined as a WDL task, and together they make a workflow.

Let’s look at the first task:

task samtools_stats_tool {
 File filein
 String filename

 runtime {
 docker: "biocontainers/samtools"
 }
 command {
 samtools stats ${filein} > ${filename}_gc_stats.txt
 }
 output {
 File statsout = "${filename}_gc_stats.txt"
 }
}

In this task, we have two input parameters, a file and a string. Then, we define the runtime environment (AKA the docker image).
This is followed by the actual command we would use in running the job. If the command needs to be split across multiple lines,
just use the ‘’ to end each line (just like in a terminal). Notice we reference the parameters with a ${}. We are reading ${filein} and writing to ${filename}.
Last, we have the output of the task, setting an output variable to be referenced in other tasks.

The next three tasks follow this same form: input parameters (usually a file), runtime definition, command, and output. Here’s what they look like:

task grep_tool {
 File grepin

 runtime {
 docker: "biocontainers/samtools"
 }

 command {
 grep --with-filename '^GCF' ${grepin} > grep_out.txt
 }

 output {
 File grepout = "grep_out.txt"
 }
}

task cut_tool {
 File cutin

 runtime {
 docker: "biocontainers/samtools"
 }

 command {
 cut -d '/' -f 9- ${cutin} > cut_out.txt
 }

 output {
 File cuttoolout = "cut_out.txt"
 }

}

task cat_tool {
 Array[File] filesin

 runtime {
 docker: "biocontainers/samtools"
 }

 command {
 cat ${sep=" " filesin} > final_gc_stats_out.txt
 }

 output {
 File finalfile = "final_gc_stats_out.txt"
 }
}

The stats tool, grep tool, and cut tool all take a single file, while the cat tool (as you might expect) takes an array of files.
Additionally, in this case, the output of grep was different compared to running the workflow in CWL, so the cut tool command
changed to account for that.

The next ‘task’ for us is to take these task-definitions and connect them together into a workflow. In this example, I’ve got a
tab separated file with two columns. The first column has google bucket paths to bam files, and the second column is a
file label (see below). That said, the input parameter to the workflow, is just telling the workflow where the list of bam files is.

workflow gcStats {

 File inputSamplesFile

 Array[Array[String]] inputSamples = read_tsv(inputSamplesFile)

 scatter (sample in inputSamples) {
 call samtools_stats_tool {
 input:
 filein=sample[0],
 filename=sample[1]
 }
 }

 scatter (statout in samtools_stats_tool.statsout) {
 call grep_tool {
 input:
 grepin = statout
 }
 }

 scatter (grepped in grep_tool.grepout) {
 call cut_tool {
 input:
 cutin = grepped
 }
 }

 call cat_tool {
 input:
 filesin = cut_tool.cuttoolout
 }

} # end workflow

In calling the first tool, we perform a scatter operation over input files. For the next tools, we perform scatter operations over the previously
called tool outputs. The last tool (the cat tool) gets an array of files as an input, and concatenates them.

The task definitions and the workflow are placed into the same file, here named ‘gcstats.wdl’. We can validate the workflow by calling:

java -jar womtool-32.jar validate gcstats.wdl

If it’s valid, there’s no errors reported.

The list of bam files is stored in a file named ‘bamfiles.txt’. Below is the file listing.

gs://daves-cromwell-bucket/bamfiles/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam bam1
gs://daves-cromwell-bucket/bamfiles/wgEncodeUwRepliSeqBjG1bAlnRep1.bam bam2
gs://daves-cromwell-bucket/bamfiles/wgEncodeUwRepliSeqBjG2AlnRep1.bam bam3
gs://daves-cromwell-bucket/bamfiles/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam bam4

The workflow input then refers to the list of bam files. This file is named ‘gcstats.input’.
A template for the json input can be generated, and filled in using this command:

java -jar womtool-32.jar inputs gcstats.wdl > gcstats.inputs

After it’s filled in, the file looks like:

{
 "gcStats.inputSamplesFile": "gs://daves-cromwell-bucket/bamfiles.txt"
}

Then, a new bucket was created which serves as the root for the cromwell execution. In that bucket,
‘daves-cromwell-bucket’, I created another folder called ‘bamfiles’ and placed the data. In the root
I placed the bamfile list ‘bamfiles.txt’.

[image: ../_images/june_fig1.png]

We’re almost ready to run! But first we need to deal with authorization. So, to do that,
all the instructions for ‘Configuring a Google Project’ need to be followed
here [http://cromwell.readthedocs.io/en/develop/tutorials/PipelinesApi101/]. That configuration is saved
in a file named ‘google.conf’. Make sure you can run the ‘hello.wdl’ example.

FINALLY, now we’re ready to run with this command:

java -Dconfig.file=google.conf -jar cromwell-32.jar run gcstats.wdl -i gcstats.inputs

This command starts up a VM in the Google cloud, runs the tasks in parallel, and writes the output to your bucket.
The resulting directory ‘cromwell-execution’ looks like this:

[image: ../_images/june_fig2.png]

The take outputs are organized (under an unreadable folder name) by name:

[image: ../_images/june_fig3.png]

And if we look inside our cat_tool folder, we see the final output file. Cool.

[image: ../_images/june_fig4.png]

That’s it! We’ve run a multi-step workflow, with steps in parallel, written in WDL, and run with Cromwell in the
google cloud. Not too bad, right? Were you able to run your own workflow? Let us know!

May, 2018

Processing bam files using CWL ‘scatter and gather’

In this edition, we’re going to continue our exploration of using CWL to run workflows on the Google cloud.
Last time, we performed a ‘scatter’ operation, where a tool is applied to a list of files.
This time, we’ll complete the paradigm by performing a ‘gather’ to collate
the results of a scatter. Additionally, we will propagate the scatter through a series of steps.

Specifically, for a list of files, we’re going to bin sequence reads by GC content, producing a single
output file that we can use to make a plot.

The tools are found in this docker image [https://hub.docker.com/r/biocontainers/samtools/]

The plan:

	compute some statistics over a list of bam files with samtools

	use grep to parse out a portion of the stats output

	use cut to select some columns from the output

	use cat to gather the outputs into a single file

Each of these steps is defined as a CWL tool, and together they make a workflow.

The first three steps of the workflow are considered scatter operations, and the
last is the gather, where outputs are combined.

Let’s look at the first tool:

#samtools_stats_tool.cwl

cwlVersion: v1.0
class: CommandLineTool

baseCommand: [samtools, stats]

requirements:
 - class: InlineJavascriptRequirement

inputs:
 filein:
 type: File
 inputBinding:
 position: 1

outputs:
 statsout:
 type: File
 outputBinding:
 glob: "*.stats"

stdout: $(inputs.filein.path.split('/').pop() + '.stats')

This tool definition is going to compute several different statistics for each bam file.
The statistic-type is delineated by a column label.
An interesting thing here, is that the standard output, usually printed to the screen,
is captured and saved using the input file name with ‘.stats’ added on,
and the output looks for that ‘.stats’ with the file glob. We want to hold onto the file
name to use as a label in the final results.

The next tool is going to parse out our statistic of interest, the GC content.

#grep_tool.cwl

cwlVersion: v1.0

class: CommandLineTool

baseCommand: grep

arguments:
 - "--with-filename"
 - "^GCF"

inputs:
 input_file:
 type: File
 inputBinding:
 position: 1

outputs:
 grepout:
 type: stdout

This is a very general tool that could be applied in many settings… it’s just grep!
Grep is a pattern matching tool, so each line of text that starts with ‘GCF’ is printed. Also
we’re going to add the input file name to each line (–with-filename).
Interesting thing here: since we don’t explicitly define the file name for the standard output (stdout),
the file name is random. We can let the workflow runner worry about it.

The next tool wraps the cut command.

#cut_tool.cwl

cwlVersion: v1.0

class: CommandLineTool

baseCommand: cut
arguments:
 - "-d "
 - "-f"
 - "1,5-"

inputs:
 input_file:
 type: File
 inputBinding:
 position: 1

outputs:
 cutout:
 type: stdout

Here, we define some ‘arguments’ to the baseCommand. The ‘-d ‘ sets the delimiter to white space,
‘-f 1,5-‘ says we want fields (-f) 1, and 5+. Column 1 is the file name, and the stats of interest
appear in columns 5 and beyond. Again we don’t define any file names for the output.

Lastly, we are going to gather all the results.

#cat_tool.cwl

cwlVersion: v1.0

class: CommandLineTool

baseCommand: cat

inputs:
 filein:
 type: File[]
 inputBinding:
 position: 1

outputs:
 catout:
 type: stdout

stdout: final_output.txt

It’s important to note that in the cat tool, we have defined the input to be an array of files.
The command becomes ‘cat file.a file.b file.c’. And here we do define the output file name.

OK! Let’s work these tools into a flow.

Important note: I developed all these tools on my local machine with small test cases. When I was ready to test on the google cloud,
the only change I made was adding the docker hint (DockerRequirement, see below), and moving tool definitions (the cwl files) data into a bucket.
It was surprisingly easy to move from the local environment to the cloud.

The main workflow:

#!/usr/bin/env cwl-runner

cwlVersion: v1.0
class: Workflow

requirements:
 ScatterFeatureRequirement: {}

hints:
 DockerRequirement:
 dockerPull: biocontainers/samtools

inputs:
 filein: File[]

outputs:
 pipeline_result:
 type: File
 outputSource: step4/catout

steps:

 step1:
 run: data/samtools_stats_tool.cwl
 scatter: [filein]
 scatterMethod: dotproduct
 in:
 filein: filein
 out:
 [statsout]

 step2:
 run: data/grep_tool.cwl
 scatter: [input_file]
 scatterMethod: dotproduct
 in:
 input_file: step1/statsout
 out:
 [grepout]

 step3:
 run: data/cut_tool.cwl
 scatter: [input_file]
 scatterMethod: dotproduct
 in:
 input_file: step2/grepout
 out:
 [cutout]

 step4:
 run: data/cat_tool.cwl
 in:
 filein: step3/cutout
 out:
 [catout]

You will notice, that we only define an array of bam files as inputs to the workflow (File[]),
the intermediates are carried through without explicitly naming them. Inputs to the middle steps
point to the outputs of previous steps (step1/statsout -> step2).

And we need to define our input files (scatter_gather_pipeline.yml):

filein:
 - {class: File, path: data/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam}
 - {class: File, path: data/wgEncodeUwRepliSeqBjG1bAlnRep1.bam}
 - {class: File, path: data/wgEncodeUwRepliSeqBjG2AlnRep1.bam}

To run this, we use the google_cwl_runner found here [https://github.com/isb-cgc/examples-Compute].

I made a working folder in my google bucket called ‘workflow-1’, and two additional folders within,
‘data’ and ‘output’. I put the bam files and the cwl tool definitions into ‘data’ and I put the workflow
file in the top level of my working folder.

./examples-Compute/google_cwl_runner/cwl_runner.sh \
 --workflow-file gs://my-bucket/workflow-1/scatter_gather_pipeline.cwl \
 --settings-file gs://my-bucket/workflow-1/scatter_gather_pipeline.yml \
 --input-recursive gs://my-bucket/workflow-1/data \
 --output gs://my-bucket/workflow-1/output \
 --machine-type n1-standard-4 \
 --zone us-west1-a \
 --preemptible

Running this command prints out some google cloud commands to enable us to check on the status of the job, and
when it’s finished we have logs for stderr, stdout, and status. Additionally we get the cwl_startup.sh,
cwl_runner.sh, and cwl_shutdown.sh scripts for your perusal.

But most importantly(!), we get our single output file containing the binned GC content (shown below).
The first column is the file name that produced the result, the second column is the percent GC,
and the last column is the number of reads.

/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 1.26 22
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 4.02 66
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 6.78 232
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 9.55 349
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 12.31 647
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 15.08 1413
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 17.84 3473
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 20.60 7676
/long.tmp.path/wgEncodeUwRepliSeqBg02esG1bAlnRep1.bam.stats:GCF 23.37 15064
...

[image: ../_images/gc_content_final_output.png]

Thanks for reading! Let us know if you have questions or comments!

April, 2018

For the next few months, we’re going to be focusing on running
workflows in the Google cloud, starting with workflows defined with CWL.
There’s a lot to explore in this area, and it’s hopefully going to be useful
for people.

We appear to be moving towards a future where bioinformatics tools are routinely
bundled into runtime containers (like docker), which are somehow ‘approved’ by the
research community as being safe and effective, launched in the cloud, process
data in the cloud, and write results to the cloud. Sounds great, but how does one
do that?

We previously documented some very low level details on
running CWL workflows [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/CWL_intro.html],
but to make things easier, we started with some code [https://github.com/googlegenomics/pipelines-api-examples/tree/master/cwl_runner]
from Google, made some updates to the scripts, and with them you can (fairly) easily run CWL workflows
in the cloud. The current working google CWL runner is found in our
examples-Compute [https://github.com/isb-cgc/examples-Compute/tree/master/google_cwl_runner]
repo.

In this example, we’ll be using a workflow (transform.cwl) [https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/workflows/dnaseq/transform.cwl]
from the GDC that was used to ‘harmonize’ TCGA data.

The CWL workflow has a few sections: requirements, inputs, outputs, and steps.
The purpose of the workflow is to execute the steps, where each step is a tool
(also described by a CWL) which has a set of inputs and outputs.

In transform.cwl, the first step is:

steps:
 - id: samtools_bamtobam
 run: ../../tools/samtools_bamtobam.cwl
 in:
 - id: INPUT
 source: bam_path
 out:
 - id: OUTPUT

Let’s look more closely at this first step
(samtools_bamtobam.cwl [https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/tools/samtools_bamtobam.cwl])
and see if we can run it; first on one file, and then on a set of files.

single file

To make the example a little more accessible, I’ve rewritten the CWL,
as seen below.

#!/usr/bin/env cwl-runner

cwlVersion: v1.0

class: CommandLineTool

hints:
 DockerRequirement:
 dockerPull: biocontainers/samtools

baseCommand: [samtools, view, -Shb]

inputs:
 filein:
 type: File
 inputBinding:
 position: 1
 fileout:
 type: string
 inputBinding:
 prefix: -o
 position: 2

outputs:
 bamsout:
 type: File
 outputBinding:
 glob: "*.bam"

OK, let’s start at the top.
This is going to run samtools [http://www.htslib.org/doc/samtools.html], so we’ve defined this CWL as a CommandLineTool.

Then, since this is running in the cloud, we need the tool to be dockerized. I did
a little searching, and found a biocontainer [https://biocontainers.pro/] with
samtools [https://hub.docker.com/r/biocontainers/samtools/]. We let CWL know this is a dockerized
tool with our DockerRequirement hint.

Next we have the baseCommand, which is a command line command that’s broken up by commas.
What’s samtools view doing? Well, if we look in Aaron Quinlan’s github repo [https://github.com/arq5x/tutorials/blob/master/samtools.md]:
“The samtools view command is the most versatile tool in the samtools package. It’s main function, not surprisingly, is to allow you to convert the binary (i.e., easy for the computer to read and process) alignments in the BAM file view to text-based SAM alignments that are easy for humans to read and process.”
The ‘view’ command, with the -Shb flags will (-S is depreciated) -h includes the header, -b outputs a bam. This is simply a bam-to-bam workflow.

We will ‘view’ an input file, named ‘filein’, and output a file, named ‘fileout’ (creative huh?). But those are the inputs, or arguments,
that I’m giving to samtools. The order of the samtools parameters is controlled by the position, and in the case of
‘fileout’, I’m attaching a prefix ‘-o’ (the output flag).

We still have the CWL outputs section. This is actually what gets connected up to a workflow (a series of steps).
Here I’ve called it ‘bamsout’, and declare the file will be named ‘something dot bam’ (*.bam).

OK then, still with me? Next I set up a google bucket with data and output folders. This is also where the CWL files go.

my-bucket/
 bamtobam/
 samtools_bamtobam_single_file.cwl
 data/
 bam1.bam
 bam2.bam (etc)
 outputs/

To get some data to work on, I moved some bams from the
ENCODE project [http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/]
to my bucket’s data folder.

The last thing we need is a settings file. This maps actual file names in our bucket
and parameter values to variable names found in the CWL.
The paths are relative to the location to the CWL file. Here’s what I used (in the yaml format):

filein:
 class: File
 path: data/wgEncodeUwRepliSeqBjG1bAlnRep1.bam
fileout: samoutput.bam

You can see the filein and fileout names match up with what’s in the CWL. This
is important.

Then after cloning our repo (git clone https://github.com/isb-cgc/examples-Compute),
we can run it!
The cwl_runner.sh script sets up a new VM, runs the cwl_startup.sh script,
attaches a disk, copies over the data,
runs the CWL, copies out the data, and shuts everything down by running the cwl_shutdown.sh script.
Here’s the command:

./examples-Compute/google_cwl_runner/cwl_runner.sh \
 --workflow-file gs://my-bucket/bamtobam/samtools_bamtobam_single_file.cwl \
 --settings-file gs://my-bucket/bamtobam/bamtobam_params.yml \
 --input-recursive gs://my-bucket/bamtobam/data \
 --output gs://isb-cgc-02-0001-workflows/bamtobam/output \
 --machine-type n1-standard-4 \
 --zone us-central1-f \
 --keep-alive \
 --preemptible

Notice we can use preemptible machines to save money. So running this command reads the bam
and writes out a new bam, which is found in our bucket after a few minutes.

debugging

If something geos wrong (it probably will), there’s a few things we can do.
First, check the logs! The stderr and stdout is copied back to our bucket,
and within those files we can find errors. Commonly (for me) paths can be wrong.

Second, you can try modifying the cwl_startup.sh script to include some print
statements. I’ve put in some statements to print out directory listings,
which gives you a view into the runtime environment.

Third, towards the bottom of the stderr, you can see the actual command that’s run.
Then, if you use the –keep-alive flag (given to cwl_runner.sh),
the VM will not shutdown, and you can get in there and try the command and see what
happens.

multiple files

It’s much more common to run a tool over a set of files. To do that, we’re going
to take our tool definition above, and write a new workflow that uses it. In
CWL terms, this is called a ‘scatter’. Later we’ll perform the ‘gather’, but for
now we’ll process the files, and write them back to our bucket.

#!/usr/bin/env cwl-runner

cwlVersion: v1.0

class: Workflow

requirements:
 ScatterFeatureRequirement: {}

inputs:
 filein: File[]
 fileout: string[]

outputs:
 bamsout:
 type: File[]
 outputSource: step1/bamsout

steps:
 step1:
 run: data/samtools_bamtobam_single_file.cwl
 scatter: [filein, fileout]
 scatterMethod: dotproduct
 in:
 filein: filein
 fileout: fileout
 out:
 [bamsout]

There’s some big differences between this definition and our tool definition.
For starters we have a new requirements: ScatterFeatureRequirement which
let’s us perform a scatter (process multiple files in parallel).

Then in our input section, we have defined an array of files and strings.
In the output section, an array of output files, noting that the
source of these outputs is from step1 (outputSource: step1/bamsout).

The steps section has only a single step. We’ll run our previously defined tool,
as a scatter over files and parameters (the output file name), with scatterMethod
dotproduct (match up the input and output file names), and we have in: and out:
names that match up with the tool definition. Very important that names connect
across the CWL definitions. It has to all fit together like legos.

Our settings file, the yaml, is also different because now we’re going to be
giving it a list of files and output file names. Note the use of ‘dictionaries’
with the curly brackets.

filein:
 - {class: File, path: data/wgEncodeUwRepliSeqBjG1bAlnRep1.bam}
 - {class: File, path: data/wgEncodeUwRepliSeqGm12801G1bAlnRep1.bam}
 - {class: File, path: data/wgEncodeUwRepliSeqGm12878S4AlnRep1.bam}
fileout:
 - wgEncodeUwRepliSeqBjG1bAlnRep1_OUT.bam
 - wgEncodeUwRepliSeqGm12801G1bAlnRep1_OUT.bam
 - wgEncodeUwRepliSeqGm12878S4AlnRep1_OUT.bam

And again we run it the same way, except, note that we put our tool definition
into the data folder so it gets copied over with the data.

./pipelines-api-examples/cwl_runner/cwl_runner.sh \
 --workflow-file gs://isb-cgc-02-0001-workflows/bamtobam/samtools_bamtobam_scatter.cwl \
 --settings-file gs://isb-cgc-02-0001-workflows/bamtobam/bamtobam_params_scatter.yml \
 --input-recursive gs://isb-cgc-02-0001-workflows/bamtobam/data \
 --output gs://isb-cgc-02-0001-workflows/bamtobam/output \
 --machine-type n1-standard-4 \
 --zone us-central1-f \
 --preemptible

If all goes well, you should see:

[image: ../_images/apr_fig1_bucket_output.png]

Whew! It’s a really steep learning curve, but the payoff is that in two years,
when you wonder ‘how did I do this?’, you can look back and easily figure that out
and probably (maybe) even run it again.

Next month we’ll continue our exploration of workflows and workflow runners. Let me know how it goes!

March, 2018

This month we demonstrate an implementation of a machine learning classifier
using BigQuery.

The ‘Top Scoring Pairs’ method, finds a pair of genes that
show the maximum difference in ranking between two user specified groups.
Given two genes, and two groups of samples, the ranking of the genes flip-flops
between the two groups. If gene_i < gene_j in group 1, then gene_i > gene_j in group 2.

To describe this more formally, let
R_i be a vector of ranks
denoting the rank of the i-th gene in a given sample.

Genes are evaluated in pairs, and scored by their differences in
the probabilities, P(R_i < R_j), between class C1 and
class C2, formally defined as the difference in the following
conditional probabilities:

Δ_ij = ∣ P(Ri < Rj ∣ C1) − P(Ri < Rj ∣ C2) ∣

Then Δ_ij is used as a criterion to produce a ordering on gene pairs.

For reference see this. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1989150/]

First let’s produce some simulated data for testing.

phenotype
ys <- c(rep(1, 10), rep(0,10))

matrix of features
xs <- matrix(data=rnorm(n=200), nrow=20)

the IDs
idstr <- as.character(randomStrings(n=nrow(df), len=5, digits=FALSE,
 upperalpha=TRUE,loweralpha=FALSE, unique=TRUE, check=TRUE))

the two best genes
i <- 5
j <- 6

create the gene pair
xs[ys == 1, i] <- rnorm(n=10, mean=-2)
xs[ys == 1, j] <- rnorm(n=10, mean=+2)
xs[ys == 0, i] <- rnorm(n=10, mean=+2)
xs[ys == 0, j] <- rnorm(n=10, mean=-2)
df <- data.frame(IDs=idstr, Y=ys, xs)

tidydf <- df %>% tidyr::gather(key="Gene", value="Expr", X1,X2,X3,X4,X5,X6,X7,X8,X9,X10)

write.table(tidydf, file="sim_for_tsp.tsv", sep='\t', row.names=F, col.names=F, quote=F)

The results should show genes X5 & X6 as the best pair for separating groups (y==0 vs y==1).

OK, let’s walk through this Top Scoring Pairs (TSP) query.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

	WITH
 #
 # First we'll rank the gene expression data by sample
 # using the simulated data.
 #
 GeneRanks AS (
 SELECT
 ID,
 Phenotype,
 Gene,
 Expr,
 RANK() OVER (PARTITION BY ID ORDER BY Expr) AS ERank
 FROM
 `isb-cgc.QotM.tsp_sim_data`
 GROUP BY
 ID,
 Phenotype,
 Gene,
 Expr),
 #
 # Then let's prepare to
 # generate the conditional probability for each
 # pair of genes within Class 1.
 # Calculating the upper triangle here.
 #
 Class1GenePairs AS (
 SELECT
 a.Gene AS Genei,
 b.Gene AS Genej,
 a.ID AS IDi,
 b.ID AS IDj,
 a.ERank AS Eranki,
 b.ERank AS Erankj
 FROM
 GeneRanks a
 JOIN
 GeneRanks b
 ON
 a.Gene < b.Gene
 AND a.ID = b.ID
 WHERE
 a.Phenotype = 1
 AND b.Phenotype = 1
 GROUP BY
 a.Gene,
 b.Gene,
 a.ID,
 b.ID,
 a.ERank,
 b.ERank),
 #
 # Then, for each pair of genes,
 # how many times does gene_i have lower rank
 # than gene_j? That's where the probability comes from.
 #
 Class1Probs AS (
 SELECT
 Genei,
 Genej,
 SUM(CAST(Eranki > -1000 AS INT64)) AS N, # number of pairs
 SUM(CAST(Eranki < Erankj AS INT64)) AS P # pairs with i < j
 FROM
 Class1GenePairs
 WHERE
 (Genei != Genej)
 GROUP BY
 Genei,
 Genej),
 #
 # Then repeat the process for Class 2.
 #
 Class2GenePairs AS (
 SELECT
 a.Gene AS Genei,
 b.Gene AS Genej,
 a.ID AS IDi,
 b.ID AS IDj,
 a.ERank AS Eranki,
 b.ERank AS Erankj
 FROM
 GeneRanks a
 JOIN
 GeneRanks b
 ON
 a.Gene < b.Gene
 AND a.ID = b.ID
 WHERE
 a.Phenotype = 1
 AND b.Phenotype = 1
 GROUP BY
 a.Gene,
 b.Gene,
 a.ID,
 b.ID,
 a.ERank,
 b.ERank),
 #
 # and get our conditional probabilities
 #
 Class2Probs AS (
 SELECT
 Genei,
 Genej,
 SUM(CAST(Eranki > -1000 AS INT64)) AS N,
 SUM(CAST(Eranki < Erankj AS INT64)) AS P
 FROM
 Class2GenePairs
 WHERE
 (Genei != Genej)
 GROUP BY
 Genei,
 Genej)
 #
 # and compute differences in conditional probs
 #
SELECT
 a.Genei AS ai,
 a.Genej AS aj,
 b.Genei AS bi,
 b.Genej AS bj,
 a.P AS Pa,
 a.N AS Na,
 b.P AS Pb,
 b.N AS Nb,
 ABS((a.P / a.N) - (b.P / b.N)) AS PDiff
FROM
 Class1Probs a
JOIN
 Class2Probs b
ON
 a.Genei = b.Genei
 AND a.Genej = b.Genej
ORDER BY
 PDiff DESC

Running this query returns a table that is ordered by the Probability difference
(the pair of genes that best separates the classes in ‘rank-space’). As a note,
I left in the gene names from both tables after the join, as a sanity
check.

[image: ../_images/march18_sim_result_1.png]

And we see that genes ‘X5’ and ‘X6’ are indeed the ‘top pair’. Trailing the
leading spot, we see other pairs that are composed of one of the two ‘top pair’.

But, let’s suppose that we want to ‘train’ the model using a subset of samples.
In that case we want to pull out a sample, train on the remainder, and then apply
to the ‘test’ case.

WITH
 #
 # Now we pull out a sample (ID: DRRTF)
 # and use the remaining samples to train the model.
 #
 GeneRanks AS (
 SELECT
 ID,
 Phenotype,
 Gene,
 Expr,
 RANK() OVER (PARTITION BY ID ORDER BY Expr) AS ERank
 FROM
 `isb-cgc.QotM.tsp_sim_data`
 WHERE
 ID != 'DRRTF'
 GROUP BY
 ID,
 Phenotype,
 Gene,
 Expr),

Then, last, we will query using that sample to determine if it’s been classified
correctly.

#
first we'll join the TSP result table, that contains the best pair of genes,
with the expression data for our held out ID.
#
callTbl AS (
 SELECT
 ai AS gene_i,
 aj AS gene_j,
 Pa,
 Pb,
 b.ID AS ID,
 b.Phenotype AS Phenotype,
 Expr
 FROM
 PairScore a
 JOIN
 `isb-cgc.QotM.tsp_sim_data` b
 ON
 b.ID = 'DRRTF'
 AND (a.ai = b.Gene
 OR a.aj = b.Gene))
#
Then, depending on the gene_a & gene_b comparison,
we make a prediction using the expr. values.
#
SELECT
 ID,
 Phenotype,
 IF(Pa < Pb,
 0,
 1) AS Prediction
FROM
 callTbl
GROUP BY
 ID,
 Phenotype,
 Prediction

[image: ../_images/march18_pred_1.png]

Seems to be working.
Let’s make a few small changes, and apply it to TCGA expression data!
First we’ll create our data set, then we’ll apply TSP on it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100

	WITH
#
To reduce the number of genes we're working with,
first we'll rank the gene expression data by coefficient of variation.
Then we'll be able to take a subset with high variance.
Also we'll filter out some long RNAs, etc.
#
GeneSelection AS (
SELECT
 gene_name,
 STDDEV(HTSeq__FPKM_UQ) / AVG(HTSeq__FPKM_UQ) AS CVExpr
FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 HTSeq__FPKM_UQ > 0
 AND REGEXP_CONTAINS(sample_barcode, '-01A')
 AND (project_short_name = 'TCGA-PAAD'
 OR project_short_name = 'TCGA-KIRP')
 AND (NOT (REGEXP_CONTAINS(gene_name, 'MT-')
 OR REGEXP_CONTAINS(gene_name, 'RN7')
 OR REGEXP_CONTAINS(gene_name, 'RNU')
 OR REGEXP_CONTAINS(gene_name, 'SNOR')))
GROUP BY
 gene_name
ORDER BY
 CVExpr DESC
LIMIT
 50),
#
#
Then we'll pick a set of random samples from
the biospecimen table. Making sure we get only
primary tumors by filtering barcodes that don't
end with '-01A'.
#
SampleSelection AS (
SELECT
 project_short_name,
 sample_barcode
FROM
 `isb-cgc.TCGA_bioclin_v0.Biospecimen`
WHERE
 REGEXP_CONTAINS(sample_barcode, '-01A')
 AND (project_short_name = 'TCGA-PAAD'
 OR project_short_name = 'TCGA-KIRP')
GROUP BY
 sample_barcode,
 project_short_name
ORDER BY
 rand()
LIMIT
 200),
#
#
With genes and samples, we can subset our expression data.
#
ExprTable AS (
SELECT
 sample_barcode,
 project_short_name,
 gene_name AS Gene,
 HTSeq__FPKM_UQ AS Expr
FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 gene_name IN (
 SELECT
 gene_name
 FROM
 GeneSelection)
 AND sample_barcode IN (
 SELECT
 sample_barcode
 FROM
 SampleSelection)
GROUP BY
 sample_barcode,
 project_short_name,
 Gene,
 Expr)
#
And we rank the gene expression and create a phenotype variable.
#
SELECT
 sample_barcode AS ID,
 project_short_name,
 IF(project_short_name = 'TCGA-PAAD',
 0,
 1) AS Phenotype,
 Gene,
 Expr,
 RANK() OVER (PARTITION BY sample_barcode ORDER BY Expr) AS ERank
FROM
 ExprTable
GROUP BY
 ID,
 project_short_name,
 Phenotype,
 Gene,
 Expr

And I’ll save that ranked table in the query of the month dataset as
isb-cgc.QotM.paad_kirp_random_sample_1002.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

	WITH
 #
 # First let's create the table of gene pairs.
 #
 Class1GenePairs AS (
 SELECT
 a.Gene AS Genei,
 b.Gene AS Genej,
 a.ID AS IDa,
 b.ID AS IDb,
 a.ERank AS Eranka,
 b.ERank AS Erankb
 FROM
 `isb-cgc.QotM.paad_kirp_random_sample_1002` a
 JOIN
 `isb-cgc.QotM.paad_kirp_random_sample_1002` b
 ON
 a.Gene < b.Gene
 AND a.ID = b.ID
 WHERE
 a.Phenotype = 0
 AND b.Phenotype = 0
 GROUP BY
 a.Gene,
 b.Gene,
 a.ID,
 b.ID,
 a.ERank,
 b.ERank),
 #
 # Then, for each pair of genes,
 # how many times does gene_i have lower rank
 # than gene_j? This is how the conditional
 # probability is calculated.
 #
 Class1Probs AS (
 SELECT
 Genei,
 Genej,
 SUM(CAST(Eranka > -1000 AS INT64)) AS N,
 SUM(CAST(Eranka < Erankb AS INT64)) AS P
 FROM
 Class1GenePairs
 WHERE
 (Genei != Genej)
 GROUP BY
 Genei,
 Genej),
 #
 # Then pair up the genes in class2
 #
 Class2GenePairs AS (
 SELECT
 a.Gene AS Genei,
 b.Gene AS Genej,
 a.ID AS IDa,
 b.ID AS IDb,
 a.ERank AS Eranka,
 b.ERank AS Erankb
 FROM
 `isb-cgc.QotM.paad_kirp_random_sample_1002` a
 JOIN
 `isb-cgc.QotM.paad_kirp_random_sample_1002` b
 ON
 a.Gene < b.Gene
 AND a.ID = b.ID
 WHERE
 a.Phenotype = 1
 AND b.Phenotype = 1
 GROUP BY
 a.Gene,
 b.Gene,
 a.ID,
 b.ID,
 a.ERank,
 b.ERank),
 #
 # and get our conditional probabilities
 #
 Class2Probs AS (
 SELECT
 Genei,
 Genej,
 SUM(CAST(Eranka > -1000 AS INT64)) AS N,
 SUM(CAST(Eranka < Erankb AS INT64)) AS P
 FROM
 Class2GenePairs
 WHERE
 (Genei != Genej)
 GROUP BY
 Genei,
 Genej),
 #
 # and compute differences in conditional probs
 #
 Results AS (
 SELECT
 a.Genei AS gene_i, # gene pair #1
 a.Genej AS gene_j, # gene pair #2
 a.P AS Pa, # number of pairs where gene #1 < gene #2 in group A
 a.N AS Na, # total number of pairs
 b.P AS Pb, # numbers for group B.
 b.N AS Nb,
 ABS((a.P / a.N) - (b.P / b.N)) AS PDiff # difference in conditional probabilities
 FROM
 Class1Probs a
 JOIN
 Class2Probs b
 ON
 a.Genei = b.Genei
 AND a.Genej = b.Genej
 ORDER BY
 PDiff DESC)
SELECT
 *
FROM
 Results

[image: ../_images/march_pred_tcga_1.png]

So we see that the best pair of genes for
separating these two studies are NKX6-3 and SLC12A3 and
9/79 PAAD samples had expression ranking where (NKX6-3 < SLC12A3)
and for KIRP samples 114/117 had a ranking where (NKX6-3 < SLC12A3). So
it’s doing a pretty good job!

Let’s check this gene pair with another random set of samples.
To do that, I’ll make another data table, similar to the above method,
but pull out our top scoring pair of genes. Then check if the rank ordering
is consistent within the two groups. This is a good exercise for the reader.
You can use the following tables: isb-cgc.QotM.results_1002 and
isb-cgc.QotM.paad_kirp_result_check

	Phenotype

	FALSE

	TRUE

	TCGA-KIRP

	5

	119

	TCGA-PAAD

	54

	18

When we see how we did (see table above, 88% accuracy), it’s very similar to what we previously
found, but clearly there’s room for improvement.
Probably changing the way genes are selected would make a difference,
and perhaps using more samples. Let me know if you give it a try!

February, 2018

[image: ../_images/feb_screenshot1.png]

ISB-CGC-BioCircos-Shiny [https://isb-cgc.shinyapps.io/ISB-CGC-BioCircos-Shiny/]

For this entry, we’re going to get back to Shiny programming and work on the
skeleton of a BioCircos [http://bioinfo.ibp.ac.cn/biocircos/] app.
These types of plots show data and relations across
the genome (typically), using a circular layout [http://circos.ca/intro/circular_approach/].

The Circos plot was first described in
Circos: An information aesthetic for comparative genomics [https://genome.cshlp.org/content/early/2009/07/20/gr.092759.109.full.pdf]
by Krzywinski et al., Genome Research, 2009 (cited 3,295 times!), and originally
aimed to display relations between genomic loci. From the paper:
“Circos uses a circular ideogram layout to facilitate the display of
relationships between pairs of positions by the use of ribbons”. Visualizing
genomic rearrangements was one of the key uses of the circos plot, but it’s also a good way to
visualize gene-gene interactions which are often separated by large genomic distances.

In this example, we will select a group of samples, and a pathway (a set of genes),
and look at the correlations between pairs of genes.
If a pathway is active, we might expect strong correlations between the participating
genes. The pathways come from Reactome [https://reactome.org/]
which was supplied by the Bader Lab [http://baderlab.org/GeneSets]
and can be found in our Query of the Month table, isb-cgc:QotM.Reactome_a1 (a1 indicates annotation).

For the remainder of this month’s episode, we’ll go through the app, and see how it works.

In this app, there are a few objects that must stay in sync. First we have
the big table of correlations, which is generated by constructing and executing a BigQuery
based on user inputs. That table is filtered based on the user-adjustable slider bar, and
summary statistics are shown in the small table on the right. The filtered
table is also shown in a table directly under the BioCircos plot.

First we’ll define the UI.

library(shiny)
library(BioCircos)
library(bigrquery)
library(stringr)
source("global.R")

ui <- fluidPage(

 # Application title
 titlePanel("ISB-CGC Query of the Month, Feb 2018"),

 sidebarLayout(
 sidebarPanel(
 fluidRow(
 textOutput('pageInfo'),
 HTML("

")
),
 fluidRow(
 selectInput("pathway", "Pathway", pathwayNames(), selected ="SIGNALLING TO RAS (18 genes)"),
 getTCGAProjs(),
 sliderInput('numGenes', 'random number of genes',min=0, max=50, value=10),
 actionButton(inputId="submit",label = "Submit after selecting pathway and cohort",
 style="color: #ffffff; background-color: #67abe5; border-color: #2e6da4"),
 HTML("

"),
 sliderInput('corrThershold', 'abs value correlation threshold',min=0, max=1, value=0.33)
),
 fluidRow(
 HTML("

"),
 textOutput('pageOutro')
)
),

 mainPanel(
 BioCircosOutput("circosPlot", width = "100%", height = "500px"), # MAIN PLOT!
 fluidRow(
 column(8, align="center", div(tableOutput('table'), style = "font-size:80%")),
 tableOutput('textboxinfo')
)
)
)
)

It’s a pretty simple layout. We have some user-interface objects on the left, and a plot and tables on the right.
The code to populate the interface is shown below.

server <- function(input, output, session) {

 # some variables used in the table summary
 rvar <- reactiveValues(geneCount = 0, edgeCount = 0, edgesTotal = 0, genesTotal = 0)

 # info text
 output$pageInfo <- renderText(infoTextBlock())
 # and some text citing the packages we used
 output$pageOutro <- renderText("Packages used: BioCircos, bigrquery")

 # calling BigQuery
 bq_data <- eventReactive(input$submit, {
 withProgress(message = 'Contacting the cloud...', value = 0, {
 incProgress(1/2, "BigQuerying...")
 pathname <- input$pathway
 cohort <- input$cohort
 n <- input$numGenes
 sql <- buildQuery(pathname, cohort, n)
 service_token <- set_service_token("data/our_saved_token.json")
 data <- query_exec(sql, project='our-project-id', use_legacy_sql = F)
 data
 })
 })

 # filter out the edges by correlation strength
 filterData <- reactive({
 bqdf <- bq_data()
 bqdfFilt <- bqdf[abs(as.numeric(bqdf$spearmans)) > input$corrThershold,]
 # potentially there are no gene-gene edges after filtering
 bqdfFilt
 })

 # update the table summary after filtering the data.
 checkTable <- observe(
 {
 # grab our handles
 bqdf <- bq_data()
 bqdfFilt <- filterData()
 # collect some counts on this data
 rvar$edgeCount <- nrow(bqdfFilt)
 rvar$edgeTotal <- nrow(bqdf)
 rvar$geneTotal <- length(c(unique(bqdf$geneA), unique(bqdf$geneB)))
 rvar$geneCount <- length(c(unique(bqdfFilt$geneA), unique(bqdfFilt$geneB)))
 if (nrow(bqdf) == 0) {
 rvar$edgeTotal <- 0
 rvar$geneCount <- 0
 }
 if (nrow(bqdfFilt) == 0) {
 bqdfFilt <- data.frame(geneA="NA",chrA="NA",startA=0,geneB="NA",chrB="NA",startB=0,spearmans=0)
 rvar$edgeCount <- 0
 rvar$geneCount <- 0
 }
 })

 # the main plot
 output$circosPlot <- renderBioCircos({

 # edge positions, From and To
 bqdfFiltered <- filterData()
 links_chromosomes_1 <- str_replace_all(bqdfFiltered$chrA, pattern="chr", replacement="")
 links_chromosomes_2 <- str_replace_all(bqdfFiltered$chrB, pattern="chr", replacement="")
 links_pos_1 <- bqdfFiltered$startA
 links_pos_2 <- bqdfFiltered$startB
 links_corr <- round(bqdfFiltered[,7],2)
 links_labels = sapply(1:length(links_pos_1), function(i) {
 paste(bqdfFiltered[i,1],bqdfFiltered[i,4], round(bqdfFiltered[i,7],2), sep=', ')
 })

 # start with the base circos-track
 tracklist = BioCircosBackgroundTrack("myBackgroundTrack",
 minRadius = 0,
 maxRadius = 0.55,
 borderSize = 0,
 fillColors = "#EEFFEE")

 # if there's links to display, add in a link-track to the track-list
 if (nrow(bqdfFiltered) > 0) {
 tracklist = tracklist + BioCircosLinkTrack('myLinkTrack',
 links_chromosomes_1, links_pos_1, links_pos_1 + 50000,
 links_chromosomes_2, links_pos_2, links_pos_2 + 50000,
 maxRadius = 0.8, labels=links_labels, displayLabel=FALSE)
 }

 # and call the main function with our track-list
 expr2 <- BioCircos(tracklist, genome = "hg19", yChr = FALSE, chrPad = 0,
 displayGenomeBorder = FALSE, genomeTicksDisplay = FALSE, genomeLabelDy = 0,
 LINKMouseOverTooltipsHtml01 = "",
 LINKMouseOutStrokeWidth=3)

 expr2
 }, quoted = F)

 # display the table of correlations
 output$table <- renderTable({
 df <- filterData();
 df$lociA <- str_c(df$chrA, ':', df$startA)
 df$lociB <- str_c(df$chrB, ':', df$startB)
 df$corr <- df$spearmans
 df <- df[, c("geneA","lociA","geneB", "lociB", "corr")]
 df
 })

 # and the table of table summaries
 output$textboxinfo <- renderTable({
 data.frame(Item=c("number of edges shown:", "number of edges total:",
 "number of genes shown:", "number of genes total:"),
 Count=c(rvar$edgeCount, rvar$edgeTotal,
 rvar$geneCount, rvar$geneTotal)
)})
 }

Run the application
shinyApp(ui = ui, server = server)

That’s it! The BigQuery tables are only executed when we make a change to one
of the drop-down selectors and click the ‘submit’ button. But, in using the observer function,
the tables are updated whenever the correlation filter is used.

The BigQuery data-getting function is very similar to the one used in our
October example [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/QueryOfTheMonthClub_dev_feb.html#october-2017]
you can find it here [https://gist.github.com/Gibbsdavidl/5580a4cb7834e2658613bb7bec07ae49] .
The user inputs are pasted into the query-string, and bigrquery::query_exec() is
used to retrieve the data. We’ve had a lot of examples of this in the past.

One fun BigQuery trick is to use RAND() to shuffle the order of rows, followed by a
LIMIT to get a random sub-sample.

ORDER BY
 rand()
LIMIT
 N

Let’s try an looking at an example in some detail.

[image: ../_images/feb_screenshot1.png]

From Cai et al. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251186/],

“Analyzing biological system abnormalities in cancer patients based on measures of biological entities,
such as gene expression levels, is an important and challenging problem. This paper applies existing methods,
Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, to pathway abnormality analysis in lung
cancer using microarray gene expression data.”

This study uses the Lung Squamous Cell Carcinoma (LUSC) data from the TCGA.
In this work, they’ve performed a gene set enrichment analysis, reporting some high scoring pathways.
Table 4 has a comparison of two gene set scoring methods, each gene set is ranked by method,
so we can get a sense of where the agreement lies.
Let’s look at the correlation structure of a couple high ranking gene sets: cell cycle
and p53 signaling pathway.

First, the cell cycle. We have the Reactome Cell Cycle pathway, but it’s made up from
617 genes, which produces way more correlations that BioCircos can display. This is an
interesting, but unsolved, problem regarding having too many gene-pairs.
Alternately, by selecting the pathway, hitting delete, and searching for cycle, I found the
‘TP53 regulates transcription of the cell cycle’ pathway, perfect!

The top correlations include the gene pairs (CCNB1, AURKA, 0.68). It’s an interesting
pair since Cyclin B1 is strongly related to oncogenesis and AURKA, another kinase
related to cell cycle, is recently getting some attention for new theraputics [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122578/].
Looking at the table of correlations, it’s safe to say that the
correlated pairs make sense in this context.

An extension to this work would involve producing a distribution of correlations
through permuations which would give a good background for comparison.

That’s it for this month. As always, if you have any special requests for queries
you would like to see or would like to submit a query of the month, please get
a hold of us! Thanks!

January, 2018

This month, we’re going to implement a common bioinformatics task: gene set
scoring. In this procedure, we will compare the <joint> expression of a set of genes
between two groups.

Gene sets frequently result from experiments in which, for example, expression is compared
between two groups (e.g. control and treatment), and the genes that are significantly
differentially expressed between the two groups form the “gene set”. Given a gene set,
numerous approaches have been proposed to assign functional interpretations to a
particular list of genes.

An related approach is to consider pathways as gene sets: each gene set will
therefore be a canonical representation of a biological process compiled by domain experts.
We will use the WikiPathways gene sets that were assembled
for a previous Query of the Month (May2017). In total, 381 pathways were downloaded from
WikiPathways [http://data.wikipathways.org/current/gmt/wikipathways-20170410-gmt-Homo_sapiens.gmt].
In the BQ table, each row contains a pathway and a gene associated with that pathway.

Our task will be to determine which genesets are
differentially expressed when comparing two groups of samples. We will define
groups of samples using the new hg38 Somatic Mutations table based on
Data Release 10 (DR10) [https://docs.gdc.cancer.gov/Data/Release_Notes/Data_Release_Notes/#data-release-100]
from the NCI Genomic Data Commons.

The BigQuery table at ISB-CGC is found at:
isb-cgc:TCGA_hg38_data_v0.Somatic_Mutation_DR10

The BigQuery pathway table is found at:
isb-cgc:QotM.WikiPathways_20170425_Annotated

We will implement a method found in a paper titled “Gene set enrichment analysis made simple”
(Rafael A Irrazary et al, PMID 20048385). They propose a simple
solution which outperforms a popular and more complex method known as GSEA.

In short, (I’ll explain more later), the gene set score comes from an average of
T-tests, where the T-statistics come from testing each gene for differential expression between the two groups.
The statistic is then weighted
by the square root of the sample size (number of genes in the set), so that with larger
gene sets, the ‘signficant’ effect size can get pretty small.

At the end of it, the full query processes 29.8GB in 10.1s and cost ~$0.15.

Let’s get started. First, which tissue type should we focus on? Let’s choose PARP1 as an
interesting gene – it encodes an enzyme involved in DNA damage repair and is also
the target of some therapeutic drugs – and use the Somatic Mutation table to choose a cancer type:

SELECT
 project_short_name,
 COUNT(DISTINCT(sample_barcode_tumor)) AS n
FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
WHERE
 Hugo_Symbol = 'PARP1'
GROUP BY
 project_short_name
ORDER BY
 n DESC

The result of that query shows that 46 tumor samples have PARP1 mutations in UCEC,
followed by COAD and STAD with 22 each. That’s a big lead by UCEC, so let’s
focus our work there.

Here’s where our main query will begin. Since this is standard SQL,
we’ll be naming each subtable, and the full
query can be constructed by concatenating each of the following sub-queries.

WITH
s1 AS (
 SELECT
 sample_barcode_tumor AS sample_barcode
 FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
 WHERE
 project_short_name = 'TCGA-UCEC'
 GROUP BY
 1
)
SELECT * FROM s1

This query returns 530 tumor sample barcodes with at least one known somatic
mutation. (The TCGA Biospecimen table includes information for a total of 553 UCEC
tumor samples, but some may have not been sequenced or may have no somatic
mutations – the former being more likely than the latter.)
Recall that somatic mutations are variants in the DNA
that are found when comparing the tumor sequence to the ‘matched normal’ sequence
(typically from a blood sample, but sometimes from adjacent tissue).
Next, for all these samples, we’ll want to restrict our analysis to samples
for which we also have mRNA expression data:

sampleGroup AS (
SELECT
 sample_barcode
FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name = 'TCGA-UCEC'
 AND sample_barcode IN
 (select sample_barcode from s1)
GROUP BY
 1)

Now we have 526 samples for which we have gene expression and somatic mutation calls.
We are interested in partitioning this group into two parts: one with a
mutation of interest, and one without.
So let’s gather barcodes for tumors with non-silent mutations in PARP1.

--
-- The first group has non-synonymous mutations in PARP1
--
grp1 AS (
SELECT
 sample_barcode_tumor AS sample_barcode
FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation_DR10`
WHERE
 Hugo_Symbol = 'PARP1'
 AND One_Consequence <> 'synonymous_variant'
 AND sample_barcode_tumor IN (
 SELECT
 sample_barcode
 FROM
 sampleGroup)
 GROUP BY sample_barcode
),
--
-- group 2 is the rest of the samples
--
grp2 AS (
SELECT
 sample_barcode
FROM
 sampleGroup
WHERE
 sample_barcode NOT IN (
 SELECT
 sample_barcode
 FROM
 grp1)
),

This results in 41 tumor samples with non-synonymous PARP1 variants and 485
samples without.

Next we’re going to summarize the gene expression within each of these groups.
This will be used for calulating T-statistics in the following portion of
the query we are constructing.
For each gene, we’ll take the mean, variance, and count of samples.

-- Summaries for Group 1 (with mutation)
--
summaryGrp1 AS (
 select
 gene_name as symbol,
 AVG(LOG10(HTSeq__FPKM_UQ +1)) as genemean,
 VAR_SAMP(LOG10(HTSeq__FPKM_UQ +1)) as genevar,
 count(sample_barcode) as genen
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 sample_barcode IN (select sample_barcode FROM grp1)
 AND gene_name IN (
 SELECT
 Symbol as gene_name
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
)
 GROUP BY
 gene_name
),
--
-- Summaries for Group 2 (without mutation)
--
summaryGrp2 AS (
 select
 gene_name as symbol,
 AVG(LOG10(HTSeq__FPKM_UQ +1)) as genemean,
 VAR_SAMP(LOG10(HTSeq__FPKM_UQ +1)) as genevar,
 count(sample_barcode) as genen
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 sample_barcode IN (select sample_barcode FROM grp2)
 AND gene_name IN (
 SELECT
 Symbol as gene_name
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
)
 GROUP BY
 gene_name
),
--

This results in two sets of summaries for 4,822 genes.
(There are 4,962 unique gene symbols in the WikiPathways table, but 140 of them do not
match any of the symbols in the TCGA hg38 expression table.)
With this, we are ready
to calculate T-statistics. Here we’re going to use a two sample T-test
assuming independent variance (and that we have enough samples to assume that).
The T-statistic is found by taking the difference in means (of gene expression between
our two groups), and normalizing it by measures of variance and sample size.
Here, we want to keep T-statistics that are zero, which might come from having
zero variance, because having a T-stat for each gene is important in the gene set
score, even if it’s a zero. To do that, you’ll see the use of an IF statement
below.

tStatsPerGene AS (
SELECT
 grp1.symbol as symbol,
 grp1.genen as grp1_n,
 grp2.genen AS grp2_n,
 grp1.genemean AS grp1_mean,
 grp2.genemean AS grp2_mean,
 grp1.genemean - grp2.genemean as meandiff,
 IF ((grp1.genevar > 0
 AND grp2.genevar > 0
 AND grp1.genen > 0
 AND grp2.genen > 0),
 (grp1.genemean - grp2.genemean) / SQRT((POW(grp1.genevar,2)/grp1.genen)+ (POW(grp2.genevar,2)/grp2.genen)),
 0.0) AS tstat
FROM
 summaryGrp1 as grp1
 JOIN
 summaryGrp2 AS grp2
 ON
 grp1.symbol = grp2.symbol
GROUP BY
 grp1.symbol,
 grp1.genemean,
 grp2.genemean,
 grp1.genevar,
 grp2.genevar,
 grp1.genen,
 grp2.genen
),

	[image: logo1]

	[image: logo2]

OK! We have a distribution of T statistics. The question is whether there’s
some hidden structure to these values. Are there gene sets with unusually high
T-statistics? And do these gene sets make any sort of biological sense?
Let’s find out!

Now we are going to integrate our gene set table. This is as easy as doing
a table join.

geneSetTable AS (
SELECT
 gs.pathway,
 gs.wikiID,
 gs.Symbol,
 st.grp1_n,
 st.grp2_n,
 st.grp1_mean,
 st.grp2_mean,
 st.meandiff,
 st.tstat
FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated` as gs
JOIN
 tStatsPerGene as st
ON
 st.symbol = gs.symbol
GROUP BY
 gs.pathway,
 gs.wikiID,
 gs.Symbol,
 st.grp1_n,
 st.grp2_n,
 st.grp1_mean,
 st.grp2_mean,
 st.meandiff,
 st.tstat
)

That’s it! For each gene in the pathways (gene sets) table, we have joined in
the T-statistic comparing our two groups. Now for the gene set score! To
get this, we’re going to simply average over the T’s within each pathway, and
scale the result by the square root of the number of genes. When the number of
genes gets large (reasonably so), the value approximates a Z-score. In this way,
using R for example, we could get a p-value and perform multiple testing correction
in order to control the false discovery rate.

geneSetScores AS (
SELECT
 pathway,
 wikiID,
 COUNT(symbol) AS n_genes,
 AVG(ABS(meandiff)) AS avgAbsDiff,
 (SQRT(COUNT(symbol))/COUNT(symbol)) * SUM(tstat) AS score
FROM
 geneSetTable
GROUP BY
 pathway,
 wikiID)
--
--
SELECT
 *
FROM
 geneSetScores
ORDER BY
 score DESC

[image: ../_images/jan_fig3_results.png]

[image: ../_images/jan_fig4_scores.png]

So, we see that ‘Retinoblastoma (RB) in Cancer’ is in the top spot with a score
way above the #2 position. Why might that be?
Well, PARP1 is involved in DNA damage repair, specifically through the
non-homologous endjoining (NHEJ) mechanism.
Samples that are deficient in PARP1 are going to have a hard time repairing DNA breaks,
which makes cancer more likely. So, RB1 might need to take up the slack,
and indeed it’s known as a ‘tumor suppressor protein’: when DNA is damaged,
the cell cycle needs to freeze, which happens to be one of RB1’s special tricks, and
also probably why we see the next two top ranked pathways ‘DNA Replication’ and ‘Cell Cycle’.

For more on this topic see:

	Retinoblastoma (RB) in Cancer (Homo sapiens) (Wiki pathway WP2446 [https://www.wikipathways.org/index.php/Pathway:WP2446])

	RB1 gene (Wikipedia entry [https://en.wikipedia.org/wiki/Retinoblastoma_protein])

	Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. (Cook et al, 2015 [https://www.ncbi.nlm.nih.gov/pubmed/25818292])

Thanks, and feel free to ask about a particular topic! We’re happy to
take requests!

December, 2017

For December we’re getting back to BigQuery. And, we’ve got a good one this month.
Perhaps you’ve heard of The Genotype-Tissue Expression (GTEx) project [https://www.gtexportal.org/home/] ?
It’s a fantastic collection of data; donors provided a wide range of healthy tissue samples
that have been used to produce a range of data types, including expression and
genomics data. You can see the documentation [https://www.gtexportal.org/home/documentationPage]
for a complete description.

Well… for this month’s query we’ve put some of this data in the cloud!

As a demonstration use-case, we thought it would be interesting to compare gene expression signatures between
TCGA and GTEx, and look at the correlation between each TCGA sample (of which there are over 10,000) and each GTEx tissue type
(of which there are 53, with the expression data averaged from multiple samples from the same tissue type).
See below for R code and visualizations.

The bigquery below contains the following steps:

	select the 5K most variable genes from each data source

	find the intersection of these two lists: this will be the list of ~3200 genes that we’ll use in the correlations

	build sub-tables of the expression data

	rank the expression data within each sample

	perform an all-by-all correlation of the ranks, between TCGA samples and GTEx tissue types (this is Spearman’s correlation)

	return 545,317 rows(!) where each row represents the correation between one TCGA sample and one GTEx tissue type

Amazingly, this query processes 12.7 GB, takes about 10-20 seconds, and only cost 6 cents!

WITH
--
-- # First we select the 5,000 most variable genes from GTEx.
-- # This is across all tissues.
--
 GTEx_top5K AS (
 SELECT
 gene_id,
 gene_description,
 STDDEV(gene_exp) AS sigmaExp
 FROM
 `isb-cgc.GTEx_v7.gene_median_tpm`
 GROUP BY
 1,
 2
 ORDER BY
 sigmaExp DESC
 LIMIT
 5000),
 --
 -- # Then we select the most variable 5K genes from TCGA.
 --
 TCGA_top5K AS (
 SELECT
 HGNC_gene_symbol,
 STDDEV(normalized_count) AS sigmaExp
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 platform='IlluminaHiSeq'
 AND HGNC_gene_symbol IS NOT NULL
 GROUP BY
 1
 ORDER BY
 sigmaExp DESC
 LIMIT
 5000),
 --
 -- # next we join the gene symbol tables to get the gene lists.
 --
 geneList AS (
 SELECT
 gene_id,
 HGNC_gene_symbol AS gene_symbol
 FROM
 GTEx_top5K
 JOIN
 TCGA_top5K
 ON
 gene_description=HGNC_gene_symbol),
 --
 -- # then we rank the gene expression within a sample_barcode.
 --
 tcgaData AS (
 SELECT
 sample_barcode,
 project_short_name AS project,
 HGNC_gene_symbol AS gene_symbol,
 normalized_count AS expr,
 DENSE_RANK() OVER (PARTITION BY sample_barcode ORDER BY normalized_count ASC) AS rankExpr
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 platform='IlluminaHiSeq'
 AND HGNC_gene_symbol IN (
 SELECT
 gene_symbol
 FROM
 geneList)),
 --
 -- # and also rank the GTEx data
 --
 gtexData AS (
 SELECT
 SMTSD AS tissueType,
 gene_description AS gene_symbol,
 gene_exp AS expr,
 DENSE_RANK() OVER (PARTITION BY SMTSD ORDER BY gene_exp ASC) AS rankExpr
 FROM
 `isb-cgc.GTEx_v7.gene_median_tpm`
 WHERE
 gene_description IN (
 SELECT
 gene_symbol
 FROM
 geneList)),
 --
 -- # last table join on TCGA and GTEx ranked gene expression data
 --
 j1 AS (
 SELECT
 g.tissueType AS GTEx_tissueType,
 g.gene_symbol,
 g.rankExpr AS gRank,
 t.sample_barcode,
 t.project AS TCGA_project,
 t.rankExpr AS tRank
 FROM
 gtexData g
 JOIN
 tcgaData t
 ON
 g.gene_symbol=t.gene_symbol),
 --
 -- # and last, we correate on the ranks (Spearman's correlation).
 --
 gtCorr AS (
 SELECT
 GTEx_tissueType,
 sample_barcode,
 TCGA_project,
 CORR(gRank,tRank) AS corr
 FROM
 j1
 GROUP BY
 1,
 2,
 3)
 --
 --
 --
SELECT
 *
FROM
 gtCorr
ORDER BY
 corr DESC

So now we’ll run the query and create some visualizations.

library(bigrquery)

q <- as.character(_the_query_above_)

res0 <- query_exec(q, project=__my_project__, use_legacy_sql=F)

dim(res0)
#[1] 545317 4

head(res0)
 GTEx_tissueType sample_barcode TCGA_project corr
1 Liver TCGA-DD-A39V-11A TCGA-LIHC 0.9213024
2 Liver TCGA-DD-A39Z-11A TCGA-LIHC 0.9189148
3 Liver TCGA-DD-A3A1-11A TCGA-LIHC 0.9176827
4 Liver TCGA-FV-A3R2-11A TCGA-LIHC 0.9153921
5 Liver TCGA-DD-A3A5-11A TCGA-LIHC 0.9149076
6 Ovary TCGA-BG-A3PP-11A TCGA-UCEC 0.9139462

OK, now we have our table of results, where each TCGA sample is paired with a
GTEx tissue type. Let’s take a look at how the tissues correspond.

Just a note here: it would be a good idea to save the results from this query into a new BigQuery
table, and continue to query the new table … but we’ll just bring it down and process it locally.

First question: what is the top scoring correlation for each TCGA type (and for each GTEx tissue type)?
We’ll group by TCGA tissue type, and within those groups, pull out the row
containing the maximum correlation. Then, we’ll group by GTEx tissue-type, and then for each tissue-type
pull out row containing the maximum correlation.

library(dplyr)
byTCGA <- res0 %>%
 select(GTEx_tissueType, TCGA_project, corr) %>%
 group_by(TCGA_project) %>%
 filter(corr == max(corr))

 byGTEx <- res0 %>%
 select(GTEx_tissueType, TCGA_project, corr) %>%
 group_by(GTEx_tissueType) %>%
 filter(corr == max(corr))

> data.frame(byTCGA)
 GTEx_tissueType TCGA_project corr
1 Liver TCGA-LIHC 0.9213024
2 Ovary TCGA-UCEC 0.9139462
3 Adrenal Gland TCGA-PCPG 0.9100819
4 Brain - Frontal Cortex (BA9) TCGA-LGG 0.9100485
5 Liver TCGA-CHOL 0.9089752
6 Brain - Frontal Cortex (BA9) TCGA-GBM 0.9021079
7 Uterus TCGA-CESC 0.8998127
8 Thyroid TCGA-THCA 0.8927743
9 Adrenal Gland TCGA-ACC 0.8871793
10 Esophagus - Mucosa TCGA-HNSC 0.8843076

> data.frame(byGTEx)
 GTEx_tissueType TCGA_project corr
1 Liver TCGA-LIHC 0.9213024
2 Ovary TCGA-UCEC 0.9139462
3 Adrenal Gland TCGA-PCPG 0.9100819
4 Brain - Frontal Cortex (BA9) TCGA-LGG 0.9100485
5 Brain - Cortex TCGA-LGG 0.9049930
6 Uterus TCGA-CESC 0.8998127
7 Brain - Anterior cingulate cortex (BA24) TCGA-LGG 0.8929013
8 Thyroid TCGA-THCA 0.8927743
9 Esophagus - Mucosa TCGA-HNSC 0.8843076
10 Brain - Amygdala TCGA-LGG 0.8832739

The tissue signatures match up very well across projects! We see TCGA tissue types correlating
most strongly with the most similar GTEx tissue types. There are some differences
depending on whether we look in blocks by TCGA tumor-type or by GTEx tissue-type, but 15 match exactly
from the two tables.

The “Liver” expression profile in particular seems to be very specific.
Let’s see how TCGA liver samples correlate with GTEx.

library(ggplot2)

lihcCorrs <- res0 %>%
 filter(TCGA_project == 'TCGA-LIHC') %>%
 select(GTEx_tissueType, TCGA_project, corr) %>%
 group_by(TCGA_project)

qplot(data=lihcCorrs, x=GTEx_tissueType, y=corr, geom="boxplot", col=as.factor(GTEx_tissueType)) +
 theme(legend.position="none") +
 theme(axis.text.x=element_text(angle=45, hjust=1)) +
 ggtitle("TCGA-LIHC")

[image: ../_images/GTEx_TCGA_corr_LIHC.png]

Where do we find unexpected correlations? When grouping by TCGA tissue, TCGA-SKCM
actually has the highest correlation with Spleen (0.798). SKCM is the abbreviation
for melanoma (SKin Cancer Melanoma) “a cancer in the type of skin cells called melanocytes” (from the GDC’s site).
To me that was a little unexpected, so let’s unpack that a bit.

library(ggplot2)

skcmCorrs <- res0 %>%
 filter(TCGA_project == 'TCGA-SKCM') %>%
 select(GTEx_tissueType, TCGA_project, corr) %>%
 group_by(TCGA_project)

qplot(data=skcmCorrs, x=GTEx_tissueType, y=corr, geom="boxplot", col=as.factor(GTEx_tissueType)) +
 theme(legend.position="none") +
 theme(axis.text.x=element_text(angle=45, hjust=1))

[image: ../_images/GTEx_TCGA_corr_SKCM.png]

After mentioning this to Sheila, she remembered that many of the melanoma samples are
metastatic samples taken from lymph nodes, and,
the spleen, like the lymph nodes, is a secondary or peripheral lymphoid organ.
Primary tumor sample barcodes are of the form ‘TCGA-XY-1234-01’ (with the final two digits
indicating the sample type), while metastatic sample barcodes end in ‘-06’.
Let’s label the points according to the sample type and see what that looks like.

skcmSpleenRows <- res0 %>% filter(GTEx_tissueType == 'Spleen' & TCGA_project == 'TCGA-SKCM')
qplot(data=skcmSpleenRows, x=1:nrow(skcmSpleenRows), y=corr, col=metastatic, pch=metastatic) +
 xlab("Samples") +
 ggtitle("SKCM correlation with spleen tissue")

[image: ../_images/SKCM_Spleen_corrs.png]

So from the plot we see that, indeed, most of the SKCM samples are metastatic samples
taken from lymph nodes, explaining the high correlation that a few of them have with
the Spleen tissue-type.

Lastly, let’s just look at the median correlations between each TCGA and GTEx
tissue type.

library(dplyr)
library(tidyr)
library(pheatmap)
res1 <- res0 %>% group_by(GTEx_tissueType, TCGA_project) %>% summarize(MeanCorr = median(corr, na.rm=T))
res2 <- spread(res1, key=GTEx_tissueType, value=MeanCorr)
resdf <- as.data.frame(res2)
rownames(resdf) <- resdf$TCGA_project
pheatmap(resdf[,-1])

[image: ../_images/GTEx_TCGA_corr_heatmap_median.png]

Thanks everyone! Hope you learned something this year. We sure did. See you in 2018!

Sincerely, the ISB-CGC team.

November, 2017

This month, we’re going to shift topics and talk about running scripts in the cloud.
In this example we’re going to use R, but it would be just as easy to run a python script.

The code can be found here [https://github.com/Gibbsdavidl/examples-R/tree/master/demos/google_dsub_RStan_example]

In this example, I’m going to be fitting Bayesian logistic regression models
using Stan [http://mc-stan.org] (a statistical modeling and computation platform).
Each job will process a different file,
but we could also have each job represent a different set of parameters, all
processing the same data.

We are going to use dsub [https://github.com/googlegenomics/dsub] to run the script,
which is similar to qsub, the common job scheduler found on many clusters and grids.
To run each job in parallel, dsub spins up a
GCE VM [https://cloud.google.com/compute/docs/instances/],
starts up a named docker on the VM,
copies input data from a
GCS bucket [https://cloud.google.com/storage/docs/],
runs the specified script, copies the output data back out to a (potentially different) GCS bucket,
and finally shuts down the VM. (** See below for help on installation on Macs! **)

‘Batch mode’ is one of the most important dsub features. It allows one to launch many
jobs with a single command. Batch mode
takes a “tasks file” or as I call it, the “task matrix”, and reads each row
as command line parameters for a job. So for example,
one column can name the location (in a google bucket) of the input data,
another column can have parameters related to the script.

As part of this demonstratation, we will:

	Define a custom R script to process user data.
(stan_logistic_regression.R, data/*)

	Generate a ‘task matrix’, each row describing a job in the google cloud.
(cmd_generator.R, task_matrix.txt)

	Use Google dsub to automatically start up a VM, run a script, and shutdown.
Please see the how_to_dsub.txt [https://github.com/isb-cgc/examples-R/blob/master/demos/google_dsub_RStan_example/how_to_dsub.txt] file for instructions.

OK, so first we will take a look at the R code. The way dsub works is that a
docker image is started up on a VM, and at that time, variables defined
in the ‘tasks file’ become available as environment variables. So you can think
about these like command line arguments, but to get them in the script, we use
‘Sys.getenv()’. The variables enter the script as strings and will need to be
typecast, depending on the need. The environment variable names are set in the
tasks file as column names using –env. We’ll look at that next.

get the file name from the env variable.
dat <- read.csv(Sys.getenv('DATA_FILE'))

stan models take a list of data
data_list <- list(y = dat$y, x = dat$x, N = length(dat$y))

compiling and producing posterior samples from the model.
stan_samples <- stan(model_code = model, data = data_list)

use the environment variable as a file name for a plot.
png(Sys.getenv('OUTPUT_PLOT'))
plot(stan_samples)
dev.off()

and finally writing out a table
write.table(as.data.frame(stan_samples), file=Sys.getenv('OUTPUT_TABLE'), quote=F, row.names=F)

It’s pretty easy to programmatically construct a tasks file. You can find an example
of that in cmd_generator.R [https://github.com/isb-cgc/examples-R/blob/master/demos/google_dsub_RStan_example/cmd_generator.R],
which writes out a tab-delimited table with the variables needed in each row.
There are essentially three types of parameters: inputs, outputs, and environment variables.
Most importantly, the inputs and outputs need to be GCS urls to objects in a bucket. So I’ve put my data
in my bucket, and I use that link in the script.

Please see these examples. [https://github.com/googlegenomics/dsub/tree/master/examples/custom_scripts]

--env SAMPLE_ID --input DATA_FILE --output OUTPUT_TABLE --output OUTPUT_PLOT
1 gs://my_bucket/data/data_file_1.csv gs://my_bucket/stan_table1.txt gs://my_bucket/stan_plot1.png
2 gs://my_bucket/data/data_file_2.csv gs://my_bucket/stan_table2.txt gs://my_bucket/stan_plot2.png
3 gs://my_bucket/data/data_file_3.csv gs://my_bucket/stan_table3.txt gs://my_bucket/stan_plot3.png

Now, if you’re on a Mac, it can be pretty hard to get dsub installed. It’s due to
a conflict with the apple version of the ‘six’ python library,
see https://github.com/pypa/pip/issues/3165 for more info.

To get around this, we can install dsub in a virtual environment [https://packaging.python.org/guides/installing-using-pip-and-virtualenv/] .
Make sure you’re using the ‘bash shell’.

virtualenv dsub_libs
source dsub_libs/bin/activate
pip install dsub

Now we’re pretty close at this point. We need to put our data in a google bucket
and find a suitable docker image. If you can’t find a docker image with everything
you need, it’s fairly easy to build one. But for this purpose, I searched for
‘docker and RStan’ and found some docker images.

	https://github.com/jburos/rstan-docker

	https://hub.docker.com/r/jackinovik/rstan-complete/

To run dsub, the command looks like:

dsub \
 --project my-google-project-0001 \
 --zones "us-west-*" \
 --logging gs://my_google_bucket/logs/ \
 --image jackinovik/rstan-complete \
 --script ./stan_logistic_regression.R \
 --tasks task_matrix.txt \
 --preemptible \
 --wait

We simply run that and we get a response…:

Job: stan-logis--davidlgibbs--171107-193915-44
Launched job-id: stan-logis--davidlgibbs--171107-193915-44
3 task(s)
To check the status, run:
 dstat --project my-google-project-0001 --jobs 'stan-logis--davidlgibbs--171107-193915-44' --status '*'
To cancel the job, run:
 ddel --project my-google-project-0001 --jobs 'stan-logis--davidlgibbs--171107-193915-44'
Waiting for job to complete...
Waiting for: stan-logis--davidlgibbs--171107-193915-44.

Now, we can check if our job’s finished using the dstat command or simply look in
our output bucket. If there’s a problem, it’s mandatory to read the logs!

The exact same procedure could be used to run python or bash scripts.

October, 2017

For October, we’re going to dive into using Plotly for visualziation in Shiny
apps. In particular, we’re going to implement an interatictive heatmap using
heatmaply. To start, here’s some important links.

ISB-CGC Gene Set Correlation Heatmaply! [https://isb-cgc.shinyapps.io/Heatmaply_Gene_Set_Corr/]

Heatmaply [https://cran.r-project.org/web/packages/heatmaply/vignettes/heatmaply.html]

The heatmaply paper [https://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx657/4562328/heatmaply-an-R-package-for-creating-interactive]

Shiny-Plotly [https://plot.ly/r/shiny-tutorial/]

bigrquery [https://github.com/r-dbi/bigrquery]

Exciting highlights include using BigRQuery to make queries from inside Shiny!
We do that by using service account authorization. And of course, heatmaply,
an interactive heatmap that lets you zoom and scroll around.

[image: ../_images/oct_fig1.png]

So we’ll just jump right into it!

First I’ll list out the ui.R code.

library(shiny)
library(plotly)
library(heatmaply)

source("global.R")

ui <- fluidPage(
 titlePanel(title=div(img(src="half_isb_logo.png"), "Immune-related Gene Set Correlation-Heatmaply (MSigDB C7)")),
 helpText(HTML("Hit submit to call Google BigQuery. In the heatmap, select an area to zoom.")),
 sidebarLayout(
 sidebarPanel(
 selectInput("var1", "Gene Set 1", getGeneSets(), selected ="GSE40685_NAIVE_CD4_TCELL_VS_TREG_UP"),
 selectInput("var2", "Gene Set 2", getGeneSets(), selected = "GSE40685_NAIVE_CD4_TCELL_VS_TREG_DN"),
 getTCGAProjs(), # returns a selectInput obj
 checkboxInput("showlabels", "Show Labels", value=T),
 checkboxInput("clustercols", label = "Cluster Columns", value = T),
 checkboxInput("clusterrows", label = "Cluster Rows", value = T),
 selectInput("seriate", "Gene Ordering Method", c("OLO", "GW", "mean", "none"), selected = "GW"),
 selectInput("hclust_method", "Hclust Method", c("ward.D", "ward.D2", "single",
 "complete", "average", "mcquitty",
 "median", "centroid"), selected="ward.D2"),
 actionButton(inputId="submit",label = "Submit")
),

 mainPanel(
 tags$head(
 tags$style(# thanks BigDataScientist @ stackoverflow!
 HTML(".shiny-notification {
 height: 50;
 width: 400px;
 position:fixed;
 top: calc(50% - 50px);;
 left: calc(50% - 200px);;
 }
 "
)
)
),
 plotlyOutput("plot", height = "600px")
)
),
 br(),
 helpText("What's going on here? The genes belonging to two immune-related gene sets are used to compute Spearman correlation on RNA-seq data from a given type of cancer. It's a visualization of the relationship between two gene sets."),
 helpText("Heatmaply: Tal Galili, Alan O'Callaghan, Jonathan Sidi, Carson Sievert; heatmaply: an R package for creating interactive cluster heatmaps for online publishing, Bioinformatics, , btx657, https://doi.org/10.1093/bioinformatics/btx657"),
 helpText("Gene sets: Molecular Signatures Database (MSigDB), C7 collection. Subramanian, Tamayo, et al. (2005, PNAS 102, 15545-15550) http://software.broadinstitute.org/gsea/msigdb"),
 helpText("Made in", a("Shiny", href="http://shiny.rstudio.com/"), " using ", a("google bigquery, bigrquery, heatmaply, and plotly"))
)

So we start up a fluidPage layout, and define a number of controls in the sidebar.
The gene set selectors get a long list of gene set names that I’ve captured
from MSigDB and dumped in a file (around 4000 gene sets!).

Another interesting technique is to define a function, like getTCGAProjs(),
that builds and returns a selectInput object, using the long list of TCGA projects.
Works great and keeps the code easy to read.

Also notice the use of CSS to change the default progress bar [https://stackoverflow.com/questions/44043475/adjust-size-of-shiny-progress-bar-and-center-it].

OK, now we can jump over to the server.R file.

server <- function(input, output, session) {

 # calling BigQuery
 bq_data <- eventReactive(input$submit, {
 load("data/gene_set_hash.rda")
 geneNames1 <- getGenes(sethash, input$var1)
 geneNames2 <- getGenes(sethash, input$var2)
 cohort <- input$cohortid
 sql <- buildQuery(geneNames1, geneNames2, cohort)
 service_token <- set_service_token("data/my_private_key.json")
 data <- query_exec(sql, project='our_bq_project', useLegacySql = F)
 data
 })

 output$plot <- renderPlotly({

 withProgress(message = 'Working...', value = 0, {
 incProgress()

 # first make the bigquery
 bqdf <- bq_data()
 incProgress()

 # then build the correlation matrix
 df <- buildCorMat(bqdf)
 incProgress()

 # then get the heatmap options
 cluster_cols <- as.logical(input$clustercols)
 cluster_rows <- as.logical(input$clusterrows)

 # color scheme
 incProgress()
 rwb <- colorRampPalette(colors = c("blue", "white", "red"))
 heatmaply(df,
 main = 'gene-gene spearman correlations',
 Colv=cluster_cols, Rowv=cluster_rows,
 colors = rwb, seriate=input$seriate,
 hclust_method = input$hclust_method,
 showticklabels = as.logical(input$showlabels),
 margins = c(150,200,NA,0))
 })
 })

 output$event <- renderPrint({
 d <- event_data("plotly_hover")
 if (is.null(d)) "Hover on a point!" else d
 })
}

So, the first function that’s listed is the bq_data function. This function executes
after the user makes their selection and hits the ‘submit’ button. I have
previously taken the ~4000 gene sets, and built a hash (using the awesome hash library)
that takes gene set names and returns the genes. The getGenes functions performs that task.
Then the BigQuery SQL is then contructed:

buildQuery <- function(geneNames1, geneNames2, cohort) {
 q <- paste(
 "
 WITH
 --
 -- first we create a subtable for gene set 1
 --
 cohortExpr1 AS (
 SELECT
 sample_barcode,
 HGNC_gene_symbol,
 LOG10(normalized_count +1) AS logexpr,
 RANK() OVER (PARTITION BY HGNC_gene_symbol ORDER BY normalized_count ASC) AS expr_rank
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 project_short_name = '",cohort ,"'
 AND HGNC_gene_symbol IN ",geneNames1 ,"
 AND normalized_count IS NOT NULL
 AND normalized_count > 0),
 --
 -- then we create a subtable for gene set 2
 --
 cohortExpr2 AS (
 SELECT
 sample_barcode,
 HGNC_gene_symbol,
 LOG10(normalized_count +1) AS logexpr,
 RANK() OVER (PARTITION BY HGNC_gene_symbol ORDER BY normalized_count ASC) AS expr_rank
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 project_short_name = '",cohort ,"'
 AND HGNC_gene_symbol IN ",geneNames2 ,"
 AND normalized_count IS NOT NULL
 AND normalized_count > 0),
 --
 -- then we join the two gene expression tables,
 -- we could get rid of the logexpr fields, but maybe
 -- they'd prove useful in some other query.
 --
 jtab AS (
 SELECT
 cohortExpr1.sample_barcode,
 cohortExpr2.sample_barcode,
 cohortExpr1.HGNC_gene_symbol as g1,
 cohortExpr2.HGNC_gene_symbol as g2,
 cohortExpr1.expr_rank as e1,
 cohortExpr2.expr_rank as e2
 FROM
 cohortExpr1
 JOIN
 cohortExpr2
 ON
 cohortExpr1.sample_barcode = cohortExpr2.sample_barcode
 GROUP BY
 cohortExpr1.sample_barcode,
 cohortExpr2.sample_barcode,
 cohortExpr1.HGNC_gene_symbol,
 cohortExpr2.HGNC_gene_symbol,
 cohortExpr1.logexpr,
 cohortExpr1.expr_rank,
 cohortExpr2.logexpr,
 cohortExpr2.expr_rank)
 --
 -- last, we correlate the RANKs, to get a Spearman correlation.
 --
 SELECT
 g1,
 g2,
 corr(e1, e2) as spearmans
 FROM
 jtab
 GROUP BY
 g1,g2
 ",
 sep="")
}

OK, so with that query-string constructed, we can make the call to Google BigQuery.
In order to get authorized, here we’re using a service account. To get that set up, you will need
to log into your Google Cloud Console, and follow
these instructions (Service account credentials) [https://cloud.google.com/storage/docs/authentication].
This will generate a small .json file containing your
private key (protect it, and don’t lose it).
Then we can use the bigrquery function set_service_token,
providing the path to the json file. Very easy! After that we simply make the
call using query_exec.

Then, to make the heatmap, we use the renderPlotly function. In that function,
first we get the summarized data from BigQuery, which is returned as a data.frame (bqdf),
and we transform that into a matrix using the reshape2 library.

library(reshape2)

buildCorMat <- function(bqdf) {
 # bqdf is a data.frame returned from query_exec
 # g1 and g2 are gene names
 # and we have a Spearman correlation
 meltdf <- melt(bqdf)
 sqdf <- dcast(meltdf, g1~g2, value.var = "value")
 # then a bit of tidying up.
 sqdf[is.na(sqdf)] <- 0
 rownames(sqdf) <- sqdf[,'g1']
 sqdf <- sqdf[,-1]
 return(sqdf)
}

With that done (building the correlation matrix), we can simply make the call to heatmaply, which is linked back to
our plotlyOutput in the mainPanel (in the ui.R code).

So we’ve just tied together Shiny, Plotly, Heatmaply, and BigQuery into one
interactive web tool. Got a question about it? Let me know! dgibbs at
systemsbiology dot org.

September, 2017

Greetings! For September we’ve implemented a new statistical test: the one-way
ANOVA. This statistical test can be used to determine whether there is a statistically
significant difference between the means of two or more independent groups.
Although in this example, I’m
only looking at two groups, it would not be difficult to extend this to any
number of groups, assuming there is a reasonable number of samples within each
group.

Consider the model yij = m + ai + eij, where yij is a continuous
variable over samples j, in groups i, and ai is a constant for
each group i, and eij is a gaussian error term with mean 0.

Using this model, we are describing the data as being sampled from groups,
with each group having a mean value equal to m + ai.
The null hypothesis is that each of the group means is
the same (ie that the ai terms are zero), while the alternative hypothesis
is that at least one of the ai terms is not zero.

We use the F-test to compare these two hypotheses.
To compute the test statistic, we compute the within-group variation and the
between-group variation.
Recall that sample variance is defined as the sum of squared differences between
observations and the mean, divided by the number of samples (normalized).

Before we get into the query, please note that you can find
a specialized version of the below query
that compares the expression between individuals with a SNP and without a SNP,
using the same SQL as the August query. I’ve put that query in this
github gist [https://gist.github.com/Gibbsdavidl/8a20097aaf8bece8fc586310795b54da].

And you can find the associated Shiny app, using the same layout
from August, where we plot the F distribution and show a comparison of means.
You can find that here [https://isb-cgc.shinyapps.io/mutstatusexpranova/].

Let’s look at the query:

WITH
 -- using standard SQL,
 -- we'll select our cohort and gene expression
 --
 cohortExpr AS (
 SELECT
 sample_barcode,
 LOG10(normalized_count) AS expr
 FROM
 `isb-cgc.TCGA_hg19_data_v0.RNAseq_Gene_Expression_UNC_RSEM`
 WHERE
 project_short_name = 'TCGA-BRCA'
 AND HGNC_gene_symbol = 'TP53'
 AND normalized_count IS NOT NULL
 AND normalized_count > 0),
 --
 -- And we'll select the variant data for our cohort,
 -- we're going to be comparing variant types (SNP, DEL, etc)
 --
 cohortVar AS (
 SELECT
 Variant_Type,
 sample_barcode_tumor AS sample_barcode
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 SYMBOL = 'TP53'),
 --
 -- then we join the expression and variant data using sample barcodes
 --
 cohort AS (
 SELECT
 cohortExpr.sample_barcode AS sample_barcode,
 Variant_Type AS group_name,
 expr
 FROM
 cohortExpr
 JOIN
 cohortVar
 ON
 cohortExpr.sample_barcode = cohortVar.sample_barcode),
 --
 -- First part of the calculation, the grand mean (over everything)
 --
 grandMeanTable AS (
 SELECT
 AVG(expr) AS grand_mean
 FROM
 cohort),
 --
 -- Then we need a mean per group, and we can get a count of samples
 -- per group.
 --
 groupMeansTable AS (
 SELECT
 AVG(expr) AS group_mean,
 group_name,
 COUNT(sample_barcode) AS n
 FROM
 cohort
 GROUP BY
 group_name),
 --
 -- To get the between-group variance
 -- we take the difference between the grand mean
 -- and the means for each group and sum over all samples
 -- ... a short cut being taking the product with n.
 -- Later we'll sum over the n_sq_diff
 --
 ssBetween AS (
 SELECT
 group_name,
 group_mean,
 grand_mean,
 n,
 n*POW(group_mean - grand_mean,2) AS n_diff_sq
 FROM
 groupMeansTable
 CROSS JOIN
 grandMeanTable),
 --
 -- Then, to get the variance within each group
 -- we have to build a table matching up the group mean
 -- with the values for each group. So we join the group
 -- means to the values on group name. We are going to
 -- sum over this table just like ssBetween
 --
 ssWithin AS (
 SELECT
 a.group_name AS group_name,
 expr,
 group_mean,
 b.n AS n,
 POW(expr - group_mean, 2) AS s2
 FROM
 cohort a
 JOIN
 ssBetween b
 ON
 a.group_name = b.group_name),
 --
 -- The F stat comes from a ratio, the numerator is
 -- calculated using the between group variance, and
 -- dividing by the number of groups (k) minus 1.
 --
 numerator AS (
 SELECT
 'dummy' AS dummy,
 SUM(n_diff_sq) / (count(group_name) - 1) AS mean_sq_between
 FROM
 ssBetween),
 --
 -- The denominator of the F stat ratio is found using the
 -- variance within groups. We divide the sum of the within
 -- group variance and divide it by (n-k).
 --
 denominator AS (
 SELECT
 'dummy' AS dummy,
 COUNT(distinct(group_name)) AS k,
 COUNT(group_name) AS n,
 SUM(s2)/(COUNT(group_name)-COUNT(distinct(group_name))) AS mean_sq_within
 FROM
 ssWithin),
 --
 -- Now we're ready to calculate F!
 --
 Ftable AS (
 SELECT
 n,
 k,
 mean_sq_between,
 mean_sq_within,
 mean_sq_between / mean_sq_within AS F
 FROM
 numerator
 JOIN
 denominator
 ON
 numerator.dummy = denominator.dummy)

SELECT
 *
FROM
 Ftable

OK, so let’s check our work. Using the BRCA cohort and TP53 as our gene,
we have 375 samples with a variant in this gene. We’re going to look at
whether the type of variant is related to the gene expression we observe.
If we just pull down the data using the ‘cohort’ subtable (as above), we
can get a small data frame, which let’s us do the standard F stat table
in R.

> # dat is the data.frame created by running the above query
>
> head(dat)
 sample_barcode group_name expr
1 TCGA-A2-A0T3-01A DEL 2.623283
2 TCGA-A8-A07B-01A DEL 2.450762
3 TCGA-AR-A5QQ-01A DEL 2.579250
4 TCGA-A2-A0YE-01A DEL 2.298823
5 TCGA-C8-A135-01A DEL 2.744527
6 TCGA-A7-A13E-01A DEL 3.246725
>
> dat %>% group_by(group_name) %>% summarize(mean=mean(expr), sd=sd(expr))
A tibble: 3 × 3
 group_name mean sd
 <fctr> <dbl> <dbl>
1 DEL 2.791941 0.3220669
2 INS 2.642215 0.1158877
3 SNP 3.218580 0.3129593
>
>
> anova(lm(data=dat, expr~group_name))
Analysis of Variance Table

Response: expr
 Df Sum Sq Mean Sq F value Pr(>F)
group_name 2 12.460 6.2302 65.147 < 2.2e-16 ***
Residuals 372 35.576 0.0956

OK, if you run the above BigQuery, you’ll see the same results.
We see that the F statistic is really high, which makes sense looking
at the difference in mean expression values across the groups (these
are log10 expression values).

I have created a specialized version of the above test (as opposed to generalized, ha ha)
that compares the expression between individuals with a SNP and without a SNP,
using the same SQL to create groups as last month. I’ve put that query in this
github gist [https://gist.github.com/Gibbsdavidl/8a20097aaf8bece8fc586310795b54da].

And additionally, I’ve put that query into a Shiny app, that uses the same layout
from August. You can find that here [https://isb-cgc.shinyapps.io/mutstatusexpranova/].

August, 2017

This month we have been working on a small demo application using BigQuery,
with a graphical front-end built with
R Shiny [https://shiny.rstudio.com/] .
You can try it out yourself here [https://isb-cgc.shinyapps.io/MutStatusSurvivalCurves/]
and even watch the video [https://youtu.be/qa2OxQLUhBY].

Using the R programming language, Shiny is an easy way to produce interactive
visualizations that can be hosted on the web.

Shiny sites are hosted by a Shiny server, which you can set up locally or
use the free shinyapps.io service, which is provided by the same
company that produces the RStudio (which has a builtin Shiny server for dev work).

In the past, we’ve shown how queries can be programmatically built up; here
we’re going to provide a user interface to collect variables that are inserted into
the BigQuery (like gene names).

The query is going to look at patient survival, and how survival rates change
with gene mutations. Therefore we’ll be using two tables and a small set of
variables:

	
	isb-cgc:TCGA_bioclin_v0.Clinical [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_bioclin_v0.Clinical] for survival data

	
	days_to_last_known_alive: This field indicates the number of days to the last
follow up appointment (still alive) or until death, relative to “time zero” (typically
the day of diagnosis).

	vital_status: This field is filled in for all but 4 cases and is correct as of
the last available follow up for that individual. Over all TCGA, 7534 cases
were known to still
be “Alive”, while 3622 were “Dead”, and 4 were of unknown vital status.

	
	isb-cgc:TCGA_hg38_data_v0.Somatic_Mutation [https://bigquery.cloud.google.com/table/isb-cgc:TCGA_hg38_data_v0.Somatic_Mutation] for mutation status

	
	Variant_Classification: eg Missense_Mutation, Silent, 3’UTR, Intron, etc (18 different values occur in this table)

	Variant_Type: one of 3 possible values: SNP, DEL, INS

	IMPACT: one of 4 values: LOW, MODERATE, HIGH, or MODIFIER

What we want the query to do, is to collect a cohort of patients into two
groups, those that have a SNP with some potential effect in a particular gene, and
those that do not. Then we can compare the
survival rates between the two groups to assess whether the mutation has some
potential effect.

Let’s take a look at an example query, then we’ll see how to build it up in the
code.

-- using Standard SQL --
--
-- First we build our table of survival times
--
WITH clin_table AS (
SELECT
 case_barcode,
 days_to_last_known_alive,
 vital_status
FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
WHERE
 project_short_name = 'TCGA-GBM'),
--
-- Then we can build our table of mutation status.
-- We do that by using an If statement with a sub-query.
--
mut_table AS (
SELECT
 case_barcode,
 IF (case_barcode IN (
 SELECT
 case_barcode
 FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation`
 WHERE
 SYMBOL = 'IDH1'
 AND Variant_Classification <> 'Silent'
 AND Variant_Type = 'SNP'
 AND IMPACT <> 'LOW'), 'Mutant', 'WT') AS mutation_status
FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation`)
--
-- Finally, we can join those tables.
--
SELECT
 mut_table.case_barcode,
 days_to_last_known_alive,
 vital_status,
 mutation_status
FROM
 clin_table
JOIN
 mut_table
ON
 clin_table.case_barcode = mut_table.case_barcode
GROUP BY
 mut_table.case_barcode,
 days_to_last_known_alive,
 vital_status,
 mutation_status

The Shiny App

Now we’ll move on to the description of the app. When creating a new Shiny
project in RStudio, two main files are created: ‘ui.R’ and ‘server.R’. Additionally,
I created one more called ‘global.R’. The ‘ui.R’ file contains the code needed to build
the html interface, ‘server.R’ contains the code that responds to the interface, and
‘global.R’ contains the functions that build the query, call the BigQuery API, and
plot the results.

Starting with the interface found in ‘ui.R’, the
googleAuthR [https://github.com/MarkEdmondson1234/googleAuthR] package was
used to perform authorization, using the googleAuthUI(“loginButton”).
Next, the GCP project ID is collected using
the textInput widget, we need this because
even after logging in, we still need to tell BigQuery which GCP project
is going to be billed for the query.
(You will need to be a member of at least one GCP project, with permissions to
run BigQuery queries. To find out the ID(s) for GCP project(s) you are a member
of, you can go to the Google Cloud Console [https://console.cloud.google.com].)
Then, patient cohorts are selected using the selectInput widget, which is like a
drop down menu of TCGA studies. And lastly, we have a textInput widget to
specify the gene symbol. At the bottom of the interface is an actionButton called
submit that kicks off the work.

ui <- fluidPage(

 #!! excluding layout code like sidebarLayout and panels. !!#

 googleAuthUI("loginButton"),

 textInput("projectid", "Project ID", value = "your project id", placeholder = "your project id"),

 selectInput("cohortid", label = "Cohort",
 choices = list(
 "TCGA-ACC"="TCGA-ACC",
 "TCGA-BLCA"="TCGA-BLCA",
 "TCGA-BRCA"="TCGA-BRCA",
 "TCGA-CESC"="TCGA-CESC",
 "TCGA-CHOL"="TCGA-CHOL",
 ## etc ##
),selected = "TCGA-GBM") ,

 textInput("varname", "Gene Symbol", value = "IDH1", placeholder = "IDH1"),

 actionButton(inputId="submit",label = "Submit")

)

In the ‘server.R’ file, there’s one main function called ‘server’. Inside that
function, we get our accessToken by calling the googleAuth module, which is
linked to the ‘loginButton’. Also we have a function linked
to the submit button called outputPlot, which wraps our plot function
in the googleAuthR::with_shiny function, in order to make our API calls while
properly logged in.

See this help [http://code.markedmondson.me/googleAuthR/articles/troubleshooting.html] on authorization.

options("googleAuthR.scopes.selected" = c("https://www.googleapis.com/auth/bigquery"))
options("googleAuthR.webapp.client_id" = "get_this_from_your_cloud_console_under_Credentials_OAuth 2.0 client IDs.apps.googleusercontent.com")
options("googleAuthR.webapp.client_secret" = "get_from_cloud_console")

server <- function(input, output, session){

 ## Create access token and render login button
 access_token <- callModule(googleAuth, "loginButton", approval_prompt = "force")

 outputPlot <- eventReactive(input$submit,{
 ## wrap existing function using googleAuthR::with_shiny
 ## pass the reactive token using shiny_access_token param
 project <- as.character(input$projectid)
 cohort <- as.character(input$cohortid)
 varname <- input$varname

 if(is.null(access_token())) {
 errorPlot()
 } else {
 with_shiny(f = drawPlot, shiny_access_token = access_token(), project, cohort, varname)
 }
 })

 output$plot <- renderPlot({outputPlot()}, width=600, height=500)
}

The plot is drawn using a model from the
survival package [https://cran.r-project.org/web/packages/survival/index.html]
and a ggplots style package called
ggsurvminer [https://cran.r-project.org/web/packages/survminer/index.html]

drawPlot <- function(project, cohort, varname) {
 #
 # first make a call to BigQuery, and build the data frame
 dat <- buildAndRunQuery(varname, project, cohort)
 #
 # then we fit our survival model
 fit <- survfit(Surv(days_to_last_known_alive, vital_status) ~ mutation_status, data=dat)
 #
 # finally visualize the survival model using ggsurvplot.
 survminer::ggsurvplot(fit=fit, data=dat, pval=T, risk.table=T, conf.int=T)
}

The last portion we’ll look at, and maybe the most important, involves the
call to big query! In the ‘buildAndRunQuery’ function, we build up the query
as a long string, then contruct an API function using googleAuthR functions,
and finally make the API call, and get the results. There are helper functions
found in the bigQueryR [http://code.markedmondson.me/bigQueryR/], but I think
it’s instructional to see how the backend works. In future QotMs, we will explore
using bigQueryR.

buildAndRunQuery <- function(varName, aproject, cohort) {
 #
 # First we're going to build the string representing the BigQuery #
 #
 q <- paste(
 "
 WITH
 clin_table AS (
 select
 case_barcode,
 days_to_last_known_alive,
 vital_status
 from
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 WHERE
 project_short_name = '", cohort,"'),
 mut_table AS (
 SELECT
 case_barcode,
 IF (case_barcode IN (
 SELECT
 case_barcode
 FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation`
 WHERE
 SYMBOL = '", varName, "'
 AND Variant_Classification <> 'Silent'
 AND Variant_Type = 'SNP'
 AND IMPACT <> 'LOW'), 'Mutant', 'WT') as mutation_status
 FROM
 `isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation`)
 SELECT
 mut_table.case_barcode,
 days_to_last_known_alive,
 vital_status,
 mutation_status
 FROM
 clin_table
 JOIN
 mut_table
 ON
 clin_table.case_barcode = mut_table.case_barcode
 GROUP BY
 mut_table.case_barcode,
 days_to_last_known_alive,
 vital_status,
 mutation_status
 ",
 sep="")

 # define body for the POST request to the Google BigQuery API
 body = list(
 query=q,
 defaultDataset.projectId=aproject,
 useLegacySql = F
)

 #create a function to make the POST call to Google BigQuery
 f = gar_api_generator("https://www.googleapis.com/bigquery/v2",
 "POST",
 path_args = list(projects=aproject, queries=""))

 # call function with body as input argument
 response = f(the_body=body)

 dat <- data.frame()
 if(!is.null(response))
 {
 # have to construct the data.frame from a list of results.
 dat = as.data.frame(do.call("rbind",lapply(response$content$rows$f,FUN = t)))
 colnames(dat) <- c("ID", "days_to_last_known_alive", "vital_status", "mutation_status")

 # then we need to do a little data-cleaning to get ready for our survival model
 dat$days_to_last_known_alive <- as.numeric(as.character(dat$days_to_last_known_alive))
 dat$vital_status <- ifelse(dat$vital_status == 'Alive', 0, 1)
 dat$mutation_status <- as.factor(dat$mutation_status)
 }
 return(dat)
}

The resulting plot will show if the two groups, defined by SNP mutation status, have
significantly different survival rates. In our example, contrary to intuition,
a mutation in the IDH1 gene, in GBM, actually has a positive effect on survival.
(See this 2014 paper [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109985/] by Cohen et al
about IDH1 and IDH2 Mutations in Gliomas for more information about this.)

[image: ../_images/august.png]

The results for the TCGA-LGG cohort are also quite striking – go have a look!

July, 2017

Way back in December we started talking about the new
NCI-GDC Data Portal [https://gdc-portal.nci.nih.gov/]
which includes both hg19 and hg38 alignments. At that time, those were part of
isb-cgc:hg19_data_previews and isb-cgc:hg38_data_previews. Now, at this point they’ve matured into three data sets:

	isb-cgc:TCGA_bioclin_v0

	isb-cgc:TCGA_hg19_data_v0

	isb-cgc:TCGA_hg38_data_v0

And, as you’ll discover, there’s been some changes to the “standard” column
names that we used previously. This was done to better align with the GDC, and
make things more universal across data sources.

For one, barcode column names (and most column names) have become all lower case
and underscore_separated. So ‘AliquotBarcode’ has become ‘aliquot_barcode’. Same with
SampleBarcode (sample_barcode). However, ParticipantBarcode has become case_barcode.
Also ‘Study’ is now refered to as ‘project_short_name’. So if you’re having
trouble getting an ‘old’ query to work, make sure the column names haven’t changed,
and check whether it’s in Legacy SQL or Standard SQL.

As we transition to standard SQL [https://cloud.google.com/bigquery/docs/reference/standard-sql/migrating-from-legacy-sql]
and the new GDC datasets, one question that’s
come up around here relates to records. Overall, in the isb-cgc datasets, there’s very few data types
other than STRINGs, INTEGERs, and FLOATs. But occasionally you’ll bump into something
that needs a different query structure, and the RECORD type is one of those.
One place to find this rare beast is in the methylation probe annotation
(isb-cgc:platform_reference.methylation_annotation [https://bigquery.cloud.google.com/table/isb-cgc:platform_reference.methylation_annotation]).

Each methylation probe has a specified genomic location, given as a chromosome and
the base position on that chromosome.
An analytical question that often arises is something like
“does methylation in this region of the genome affect RNA transcription?”. It’s
a good question, and can actually be pretty hard to determine. But here, we’ll focus
on one of the first steps in the analysis, mapping probes to genes.

In the isb-cgc:platform_reference.methylation_annotation table schema, we find a
RECORD called ‘UCSC’. If we look at the details of the table (via the web interface)
we see that the table has 485,577 rows and has the following description:

This table is based on the Illumina DNA methylation platform annotation information
found in the file HumanMethylation450_15017482_v.1.2.csv which can be obtained
from Illumina. This information has been loaded into a BigQuery table and made
available to the public with permission from Illumina.

Sounds good! A couple important columns are going to be the IlmnID, which
is the probe ID (example: cg10232580), and the UCSC RECORD, where we’ll find
the gene symbol, RefGene accession ID, and the portion of the gene the probe is
closest to (approximately).

Let’s start with an easy one:

SELECT
 Infinium_Design_Type,
 COUNT(Infinium_Design_Type) as type_count
FROM
 `isb-cgc.platform_reference.methylation_annotation`
GROUP BY
 Infinium_Design_Type

Row Infinium_Design_Type type_count
1 I 135501
2 II 350076

Why does that matter? Well, the array was actually a blend of two different
technologies. This paper [https://www.ncbi.nlm.nih.gov/pubmed/22126295]
and this paper [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740789/]
show that the performance of the two probes is very different, and that type II
probes appear to be less useful than the type I probes.

Now, let’s suppose we are interested in a particular pathway, and we’d like to know
the distribution of probe types across the pathway genes. Using our previous
‘Query of the Month’ data set (isb-cgc:QotM.WikiPathways_20170425_Annotated),
we can get a list of functionally related genes.

SELECT
 DISTINCT(Symbol) as gene_symbol
FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
WHERE
 pathway = 'Oxidative Damage'

and we get 40 genes. So now we’re going to join the annotation table, to our
table of pathway related genes, and get the probe types.

WITH
pathway AS (
SELECT
 DISTINCT(Symbol) as gene_symbol
FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
WHERE
 pathway = 'Oxidative Damage'
)
SELECT
 Infinium_Design_Type,
 COUNT(Infinium_Design_Type)
FROM
 `isb-cgc.platform_reference.methylation_annotation` as m
JOIN
 pathway
ON
 pathway.gene_symbol = m.UCSC.RefGene_Name
GROUP BY
 Infinium_Design_Type

Query Failed
Error: Cannot access field RefGene_Name on a value with type
ARRAY<STRUCT<RefGene_Group STRING, RefGene_Accession STRING, RefGene_Name STRING>> at [18:34]

What happened? It’s that darned RECORD, which in our error, actually looks to be an
ARRAY of STRUCTS! We have previously
used arrays in our queries in past months where we took a list of values and created
an array to be passed to a JavaScript function. The result of the function gave us
back an array, and we had to UNNEST it, to get back one row per entry. It’s similar
in this instance. Some probes are mapped to multiple RefGene_Accession IDs. For example,
cg10241718 maps to NM_033302, NM_033303, NM_033304, and NM_000680. Interestingly, you
see this same set as part of the HG-U133A probe annotations (Thanks, genecard-geneannot webservice).
These are representing four different transcripts of the same gene ADRA1A, the methylation
probe has the same relationship to three of the isoforms (the gene body), but for one isoform,
NM_000680, the probe is positioned 3’-UTR, which could change its effect. In light of that, we might want
to group by gene symbol (mostly the same) and the refgene_group, which tells us the
relative position of the probe to the gene.

To (finally!) address the problem of RECORDS, we need to check the BigQuery
docs [https://cloud.google.com/bigquery/docs/reference/standard-sql/migrating-from-legacy-sql]
There, we see that the RECORD in Legacy SQL has becomes a STRUCT in Standard SQL. In order
to flatten the table, in Legacy SQL we would use FLATTEN, but now, in Standard SQL we are
going to use UNNEST.

So what’s the difference between an ARRAY and a STRUCT?
Well an ARRAY is “an ordered list of zero or more elements of non-ARRAY values,”
and a STRUCT is a “container of ordered fields each with a type.”
Hmmm, sounds pretty similar,
the difference being that a STRUCT can be a collection of different data types (STRINGS and INTs for
example), while ARRAYs have to be a single data type.

To get around that, we are going to flatten the table using UNNEST.

SELECT
 RefGene_Name,
 RefGene_Group
FROM
 `isb-cgc.platform_reference.methylation_annotation`,
 UNNEST(UCSC)
LIMIT
 1000

Row RefGene_Name RefGene_Group
1 null null
2 null null
3 IQCE Body
4 IQCE Body
5 CRYGN 3'UTR
6 IQCE Body
7 IQCE Body
8 ELFN1 5'UTR

That’s more like it! Now we can write our final query.

WITH
 -- first we'll UNNEST our probes
 --
 probes AS (
 SELECT
 RefGene_Name,
 RefGene_Group,
 Infinium_Design_Type
 FROM
 `isb-cgc.platform_reference.methylation_annotation`,
 UNNEST(UCSC)),
 --
 -- Then we'll select genes taking part in our pathway of interest
 --
 genes AS (
 SELECT
 DISTINCT(Symbol) AS gene_symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Oxidative Damage'),
 --
 -- We can join the unnested table to our table of genes.
 --
 join_table AS (
 SELECT
 genes.gene_symbol,
 probes.RefGene_Group,
 probes.Infinium_Design_Type
 FROM
 probes
 JOIN
 genes
 ON
 genes.gene_symbol = probes.RefGene_Name
 GROUP BY
 genes.gene_symbol,
 probes.RefGene_Group,
 probes.Infinium_Design_Type)
--
-- And summarize on the probe type.
--
SELECT
 Infinium_Design_Type,
 COUNT(Infinium_Design_Type),
 RefGene_Group
FROM
 join_table
GROUP BY
 RefGene_Group,
 Infinium_Design_Type

Row Infinium_Design_Type type_count RefGene_Group
1 I 3 3'UTR
2 I 17 TSS1500
3 I 20 TSS200
4 I 20 Body
5 I 20 1stExon
6 I 23 5'UTR
7 II 25 5'UTR
8 II 25 1stExon
9 II 29 TSS200
10 II 31 3'UTR
11 II 38 TSS1500
12 II 39 Body

OK! So, this pathway is covered by probes of both types, and we do see more
of the type II probes (which lack in performance), but there’s also a good
number of type I probes that should be useful.

So, in summary, when using the ISB-CGC tables, you probably won’t run into too many
RECORD data types, but if you do, you’ll be prepared.

As an exercise for the reader, you might want to try and join the
information explored above with the information in the one of the
GENCODE tables – try using the methylation probe coordinates and
the GENCODE gene coordinates to see if the information in the UCSC
record in the methylation table is completely accurate, or check to
see if there are important differences between hg19/GRCh37 and hg38/Grch38.
If you come up with some useful queries, feel free to email us and
we’ll feature you on this page!

May, 2017

This month we are going to extend the query from April and focus on estimating the
distance between samples based on shared mutations in pathways. To clarify, we want to know, given
a particular pathway, such as the WNT signaling pathway, whether two samples
share deleterious mutations within that pathway. In April, we were comparing samples
based on shared mutations, but in considering all genes simultaneously, we had
some pretty low Jaccard indices.

A second goal will be to create a set of pathways, for each sample, where pathways
contain at least one potentially harmful mutation. Then we will again estimate the
distance between samples based on the set of (potentially) altered pathways.

New for this month, we also have a whole host of new BigQuery tables from
COSMIC [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/COSMIC.html].

For our query this month, we downloaded 381 pathways from
WikiPathways [http://data.wikipathways.org/current/gmt/wikipathways-20170410-gmt-Homo_sapiens.gmt].
In the BQ table, each row contains a pathway and a gene associated with that pathway.

For this portion of the work, I wrote a small python script to parse .gmt files to
output a ‘tidy’ (format), which is required for
uploading to BigQuery. Then with this file, I used the BQ web interface uploader.
To upload a table, clicking the ‘+’ symbol next to a dataset
reveals the ‘Create Table’ interface. For smaller files, we can upload it directly,
whereas with larger files, we need to move it to cloud storage first. After giving it a table
name, and with some luck, we can just click the ‘Automatically detect’ schema check box.
I’ve been having good luck with it, but you might run into trouble if the ‘top’ of a column
looks like an integer, but the actual type is a ‘string’.

I’ve created a table with a column listing the pathway name, and a second
column listing the genes associated with the pathway. I used the org.Hs.eg.db
human database of gene identifiers found in Bioconductor to map the gene IDs to a few often
used variants.

For this analysis, first I will select a few pathways that are well known and often important in cancer
processes, then we’ll move to using all pathways. And towards the end, we’ll look at all pathways and all
studies!

SELECT
 Symbol
FROM
 `isb-cgc:QotM.WikiPathways_20170425_Annotated`
WHERE
 pathway = 'Notch Signaling Pathway'
GROUP BY
 Symbol

The above query returns 79 gene symbols. Let’s see how many variants are found
in this pathway.

WITH
 pathGenes AS (
 SELECT
 Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Notch Signaling Pathway'
 GROUP BY
 Symbol
),
 varsMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND SWISSPROT IS NOT NULL
 AND REGEXP_CONTAINS(PolyPhen, 'damaging')
 AND REGEXP_CONTAINS(SIFT, 'deleterious')
 AND Hugo_Symbol IN (select Symbol as Hugo_Symbol from pathGenes)
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol
)
--
--
SELECT
 project_short_name,
 COUNT(*) AS N_vars
FROM
 varsMC3
GROUP BY
 project_short_name
ORDER BY
 N_vars DESC

[image: ../_images/may_1.png]

So there are quite a few variants found in this pathway.
Let’s find out a little more information about them.
I’m going to replace the last ‘select’ statement of the above query
to look at the returned rows. Also, similar to last month,
we’re going to look at a small subset of cancer types to ensure the queries come back quickly.

SELECT
 Hugo_Symbol,
 count(Hugo_Symbol) as gene_count
FROM
 varsMC3
WHERE
 project_short_name = 'TCGA-COAD'
group by
 Hugo_Symbol
order by
 gene_count dESC

[image: ../_images/may_2_2.png]

These counts show that some genes are mutated more often
than others. In COAD, FBXW7 is mutated more than twice as often as the next
most mutated gene, NOTCH1. Both of these genes are well known among cancer
researchers.

OK, let’s compute a Jaccard index based on this pathway!

WITH
 --
 -- First we define our pathway of interest.
 --
 pathGenes AS (
 SELECT
 Symbol as Hugo_Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Notch Signaling Pathway'
 GROUP BY
 Symbol
),
 --
 -- Then we're going to extract just the project names, cases, and gene symbols,
 -- using the "GROUP BY" to make sure we only count one mutation per gene per case
 -- and we'll just take genes that are in the pathway.
 --
 firstVars AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Hugo_Symbol IN (select Hugo_Symbol from pathGenes)
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND project_short_name IN ('TCGA-PAAD', 'TCGA-GBM', 'TCGA-LGG')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol),
 --
 -- Next we transform resulting table using the ARRAY_AGG function
 -- to create a list of mutated genes for each case
 --
 arrayMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 firstVars
 GROUP BY
 project_short_name,
 case_barcode),
 --
 -- Now we can do some "set operations" on these gene-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 --
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 ARRAY_LENGTH(a.geneArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.geneArray) AS length2,
 --
 -- here's the intersection
 (SELECT
 COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb)
 AS gene_intersection,
 --
 -- and here's the union
 (SELECT
 COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx)
 AS gene_union
 FROM
 arrayMC3 AS a
 JOIN
 arrayMC3 AS b
 ON
 a.case_barcode < b.case_barcode)
 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 case1,
 study1,
 length1 AS geneCount1,
 case2,
 study2,
 length2 AS geneCount2,
 gene_intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.1
 AND gene_intersection > 5
ORDER BY
 jaccard_index DESC

[image: ../_images/may_3.png]

So, it’s very interesting that we are getting samples from GBM (brain) and PAAD
(pancreas) with high overlaps in the gene sets. But it makes sense since the
Notch signaling pathway was been implciated in both of these cancer types.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283135/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621772/

Now we’ll move on to the COSMIC data, where we will compare a GBM sample
to various non-TCGA samples in COSMIC.

WITH
 --
 -- First we define our pathway of interest.
 --
 pathGenes AS (
 SELECT
 Symbol as Hugo_Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 WHERE
 pathway = 'Notch Signaling Pathway'
 GROUP BY
 Symbol
),
 --
 -- Then we'll select a single TCGA sample, with filters similar to the above.
 --
 tcgaSample AS (
 SELECT
 sample_barcode_tumor,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 sample_barcode_tumor = 'TCGA-06-5416-01A'
 AND Hugo_Symbol IN (select Hugo_Symbol from pathGenes)
 AND Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 GROUP BY
 sample_barcode_tumor,
 Hugo_Symbol),
 --
 -- Then we'll create a sub-table of COSMIC samples, sans TCGA.
 --
 cosmicSample AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 WHERE
 STARTS_WITH(Sample_name, "TCGA") = FALSE
 AND Mutation_Description = 'Substitution - Missense'
 AND FATHMM_prediction = "PATHOGENIC"
 AND Gene_name IN (select Hugo_symbol from pathGenes)
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name),
 --
 -- Then we make the array of genes for the TCGA sample.
 --
 tcgaSampleArray AS (
 SELECT
 sample_barcode_tumor,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 tcgaSample
 GROUP BY
 sample_barcode_tumor),
 --
 -- Then we make the array of genes for each cosmic sample.
 --
 cosmicSampleArray AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 ARRAY_AGG(DISTINCT Gene_name) AS geneArray
 FROM
 cosmicSample
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source),
 --
 -- Next we can perform our set operations on the arrays.
 --
 setOpsTable AS (
 SELECT
 a.sample_barcode_tumor AS tcgaSample,
 b.Sample_name AS cosmicSample,
 b.Primary_site,
 b.Primary_histology,
 b.Sample_source,
 ARRAY_LENGTH(a.geneArray) AS length1,
 ARRAY_LENGTH(b.geneArray) AS length2,
 (SELECT COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb) AS gene_intersection,
 (SELECT COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx) AS gene_union
 FROM
 tcgaSampleArray AS a
 JOIN
 cosmicSampleArray AS b
 ON
 a.sample_barcode_tumor < b.Sample_name)
 --
 -- And build our final results.
 --
SELECT
 tcgaSample,
 length1 AS geneCount1,
 cosmicSample,
 Primary_site,
 Primary_histology,
 length2 AS geneCount2,
 gene_intersection AS intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.00
 AND gene_intersection > 1
 AND gene_union > 1
ORDER BY
 jaccard_index DESC

[image: ../_images/may_cosmic_1.png]

So, for this particular pathway, the Jaccard indices are not spectacular.
But(!), what we really want is to look at all pathways simultaneously.
Then for any given pair of samples, we could rank the mutation overlap by pathway.
To do that, instead of selecting a pathway in the first subtable… we build a
table containing all pathways, and join on that further down in the query.

Just note, this is a longer running query (takes about 2 minutes).

WITH
 --
 -- First we make a table with pathways and genes.
 --
 pathGenes AS (
 SELECT
 pathway,
 Symbol as Hugo_Symbol
 FROM
 `isb-cgc.QotM.WikiPathways_20170425_Annotated`
 GROUP BY
 Symbol,
 pathway
),
 --
 -- Then we're going to extract just the project names, cases, and gene symbols,
 -- using the "GROUP BY" to make sure we only count one mutation per gene per case
 -- and we'll join to the above pathway table.
 --
 firstVars AS (
 SELECT
 a.project_short_name,
 a.case_barcode,
 a.Hugo_Symbol,
 b.pathway
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3` as a
 join
 pathGenes as b
 on
 a.Hugo_Symbol = b.Hugo_Symbol
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND project_short_name IN ('TCGA-PAAD', 'TCGA-GBM', 'TCGA-LGG', 'TCGA-BRCA', 'TCGA-KIRC')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol,
 pathway
),
 --
 -- Next we transform resulting table using the ARRAY_AGG function
 -- to create a list of mutated genes for each case
 --
 arrayMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 pathway,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 firstVars
 GROUP BY
 project_short_name,
 case_barcode,
 pathway
),
 --
 -- Now we can do some "set operations" on these gene-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 --
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 a.pathway as pathway,
 ARRAY_LENGTH(a.geneArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.geneArray) AS length2,
 --
 -- here's the intersection
 (SELECT
 COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb)
 AS gene_intersection,
 --
 -- and here's the union
 (SELECT
 COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx)
 AS gene_union
 FROM
 arrayMC3 AS a
 JOIN
 arrayMC3 AS b
 ON
 a.case_barcode < b.case_barcode AND
 a.pathway = b.pathway
)
 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 pathway,
 case1,
 study1,
 length1 AS geneCount1,
 case2,
 study2,
 length2 AS geneCount2,
 gene_intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.3
 AND gene_intersection > 10
ORDER BY
 jaccard_index DESC

[image: ../_images/may_5.png]

OK! Now we’ve got some pretty decent overlaps. We now have a way to search for
similarities among groups of samples based on functionally based shared mutation
profiles.

Turning this question around a little bit,
what if we looked at the overlap on the pathway level instead?

WITH
 --
 -- First we'll join the filtered somatic mutation table to the
 -- table of pathways.
 --
 vars AS (
 SELECT
 mc3.project_short_name,
 mc3.case_barcode,
 mc3.Hugo_Symbol,
 wikip.pathway
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3` as mc3
 join
 `isb-cgc.QotM.WikiPathways_20170425_Annotated` as wikip
 ON
 mc3.Hugo_Symbol = wikip.Symbol
 WHERE
 mc3.Variant_Type = 'SNP'
 AND mc3.Consequence = 'missense_variant'
 AND mc3.biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(mc3.PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(mc3.SIFT, 'deleterious'))
 AND mc3.project_short_name IN ('TCGA-BRCA', 'TCGA-GBM')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 mc3.project_short_name,
 mc3.case_barcode,
 mc3.Hugo_Symbol,
 wikip.pathway),
 --
 -- Next we transform resulting table using the ARRAY_AGG function
 -- to create a list of pathways for each case, where each pathway
 -- contains at least one mutated gene.
 --
 arrayPath AS (
 SELECT
 project_short_name,
 case_barcode,
 ARRAY_AGG(DISTINCT pathway) AS pathArray
 FROM
 vars
 GROUP BY
 project_short_name,
 case_barcode),

 --
 -- Now we can do some "set operations" on these pathway-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 --
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 ARRAY_LENGTH(a.pathArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.pathArray) AS length2,
 --
 -- here's the intersection
 (SELECT
 COUNT(1) FROM
 UNNEST(a.pathArray) AS ga JOIN UNNEST(b.pathArray) AS gb ON ga = gb)
 AS path_intersection,
 --
 -- and here's the union
 (SELECT
 COUNT(DISTINCT gx) FROM
 UNNEST(ARRAY_CONCAT(a.pathArray,b.pathArray)) AS gx)
 AS path_union
 FROM
 arrayPath AS a
 JOIN
 arrayPath AS b
 ON
 a.case_barcode < b.case_barcode)
 --

 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 case1,
 study1,
 length1 AS pathCount1,
 case2,
 study2,
 length2 AS pathCount2,
 path_intersection,
 path_union,
 (path_intersection / path_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (path_intersection / path_union) > 0.8
 AND path_intersection > 10
ORDER BY
 jaccard_index DESC

[image: ../_images/may_brca_pathway_jaccard.png]

[image: ../_images/may_brca_pathways_jaccard_2.png]

Wow, those are some excellent jaccard indices! Considering that we started
with just over 300 pathways, we have samples perfectly or nearly perfectly
in agreement.

Next, let’s see how the samples are associating on a tissue level. I’m going to add
this query to the end of the above query, to tabulate how often study1 and study2
agree regarding tissue of origin (between BRCA and GBM).

SELECT
 table_cell,
 COUNT(*) AS n
FROM (
 SELECT (
 CASE
 WHEN study1 = 'TCGA-BRCA' AND study2 = 'TCGA-BRCA' THEN 'BRCA-BRCA'
 WHEN study1 = 'TCGA-BRCA' AND study2 = 'TCGA-GBM' THEN 'BRCA-GBM'
 WHEN study1 = 'TCGA-GBM' AND study2 = 'TCGA-BRCA' THEN 'GBM-BRCA'
 WHEN study1 = 'TCGA-GBM' AND study2 = 'TCGA-GBM' THEN 'GBM-GBM'
 ELSE 'None'
 END) AS table_cell
 FROM
 jtable)
GROUP BY
 table_cell
ORDER BY
 n DESC

[image: ../_images/may_brca_jaccard_table.png]

So, we see that the really high Jaccard indices are coming (mostly) from
BRCA-BRCA sample comparisons.

With one additional change to the above query we can query across all TCGA studies
rather than just a few. The change involves removing the
mc3.project_short_name IN ('TCGA-BRCA', 'TCGA-GBM') conditional. This is a
good trick that works in many cases. By removing the conditional, instead of
querying on just a few, we query across all studies, letting each sample be
paired with every other. Doing this, and setting the Jaccard index threshold
to 0.5, we get > 800K rows of results back, where each sample pair is
compared on the similarity of their potentially disrupted pathways. Bringing
the results into R, I created a heatmap showing how many TCGA study pairs were
among the results. We see some tissue types are most similar to only that type
of tissue, whereas other tissue types share patterns of disrupted pathways.

[image: ../_images/all_tcga_jaccard_by_pathways_log_counts.png]

April, 2017

In this month’s query, we are going to look at two new data sources. The first
is the MC3 somatic mutation table, and the second is the
COSMIC mutation database [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/COSMIC.html].
The objective is to compute a similarity metric based on
overlapping mutations between samples. First we’ll look at pairwise similarity
among TCGA samples, and then we’ll pick a single TCGA sample and search for a
matching COSMIC sample.

The MC3 table comes from the TCGA Pan-Cancer effort, a multi-center project aiming
to analyze all 33 TCGA tumor-types together. This somatic mutation calls table is
based on the unified call set recently published by the TCGA Network.
(For more details or the original source file, please
check Synapse [https://www.synapse.org/#!Synapse:syn7214402/wiki/405297].)

The COSMIC
(Catalogue Of Somatic Mutations In Cancer [http://cancer.sanger.ac.uk/cosmic])
data comes from the Wellcome Trust Sanger Institue and represents the
“the world’s largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer”.

To compute a similarity score between any two samples, we’ll use the
Jaccard index, in which the intersection is divided by the union, so that
samples with no overlap in mutations will have a Jaccard index of 0, while
samples with some overlap will have a Jaccard index between 0 and 1.

We’ll start with the MC3 table – which includes the predicted effect
of each mutation call. The mutation might result in a
change in the amino acid sequence (non-synonomous), or introduce a new stop
codon (stop insert), or no amino-acid change (synonomous). In this work
we’re going to focus on single nucleotide polymorphisms (SNPs).

First, lets see what kind of “consequences” are present in this table:

SELECT
 Consequence,
 count (1) AS n
FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
WHERE
 Variant_Type = 'SNP'
GROUP BY
 Consequence
ORDER BY
 n DESC

	Row

	Consequence

	n

	1

	missense_variant

	1921705

	2

	synonymous_variant

	781564

	3

	3_prime_UTR_variant

	253582

	4

	stop_gained

	156768

	5

	intron_variant

	86347

	6

	5_prime_UTR_variant

	77069

	7

	non_coding_transcript_exon_variant

	46761

	8

	splice_acceptor_variant

	29658

	9

	downstream_gene_variant

	19048

	10

	splice_donor_variant

	18239

	11

	splice_region_variant

	15231

	12

	upstream_gene_variant

	14990

	13

	start_lost

	2718

	14

	stop_lost

	2038

	15

	stop_retained_variant

	1077

For the sake of simplicity, we’re going to focus on the most common type of
variant, the missense_variant which is more likely to have a functional impact
through an alteration of the amino acid sequence.

Another question we might ask is: how are variants distributed across the
tumor types (aka “studies” or “projects” within TCGA).

WITH
 firstMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND SWISSPROT IS NOT NULL
 AND REGEXP_CONTAINS(PolyPhen, 'damaging')
 AND REGEXP_CONTAINS(SIFT, 'deleterious')
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol)
--
--
SELECT
 project_short_name,
 COUNT(*) AS N_genes
FROM
 firstMC3
GROUP BY
 project_short_name
ORDER BY
 N_genes DESC

Wow! The very high mutation counts for SKCM (melanoma) and LUAD
(lung adenocarcinoma) may not be surprising, but the high mutation
rate in endometial cancer (UCEC) may be less well known.

	Row

	project_short_name

	N_genes

	1

	TCGA-UCEC

	156877

	2

	TCGA-SKCM

	112324

	3

	TCGA-LUAD

	53119

	4

	TCGA-COAD

	51072

	5

	TCGA-LUSC

	44260

	6

	TCGA-STAD

	44229

	.

	
	

OK, let’s compute a Jaccard index across all samples in a few selected tumor-specific projects.
Look for how the ‘array’ gets used.

WITH
 --
 -- first we're going to extract just the project names, cases, and gene symbols,
 -- using the "GROUP BY" to make sure we only count one mutation per gene per case
 firstMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND project_short_name IN ('TCGA-PAAD', 'TCGA-GBM', 'TCGA-LGG')
 -- We could remove the above line to compute using all samples,
 -- but to speed things up, let's just look at 3 studies.
 GROUP BY
 project_short_name,
 case_barcode,
 Hugo_Symbol),
 --
 -- next we transform resulting table using the ARRAY_AGG function
 -- to create a list of mutated genes for each case
 arrayMC3 AS (
 SELECT
 project_short_name,
 case_barcode,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 firstMC3
 GROUP BY
 project_short_name,
 case_barcode),
 --
 -- now we can do some "set operations" on these gene-lists: a self-join
 -- of the previously created table with itself will allow for a pairwise
 -- pairwise comparison (notice the inequality in the JOIN ... ON clause)
 setOpsTable AS (
 SELECT
 a.case_barcode AS case1,
 a.project_short_name AS study1,
 ARRAY_LENGTH(a.geneArray) AS length1,
 b.case_barcode AS case2,
 b.project_short_name AS study2,
 ARRAY_LENGTH(b.geneArray) AS length2,
 --
 -- here's the intersection
 (
 SELECT
 COUNT(1)
 FROM
 UNNEST(a.geneArray) AS ga
 JOIN
 UNNEST(b.geneArray) AS gb
 ON
 ga = gb) AS gene_intersection,
 --
 -- and here's the union
 (
 SELECT
 COUNT(DISTINCT gx)
 FROM
 UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx) AS gene_union
 FROM
 arrayMC3 AS a
 JOIN
 arrayMC3 AS b
 ON
 a.case_barcode < b.case_barcode)
 --
 -- and finally, we can compute the Jaccard index, and
 -- do a little bit of filtering and then output a list of
 -- pairs, sorted based on the Jaccard index:
SELECT
 case1,
 study1,
 length1 AS geneCount1,
 case2,
 study2,
 length2 AS geneCount2,
 gene_intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.1
 AND gene_intersection > 10
ORDER BY
 jaccard_index DESC

The top 5 results from the above query surprisingly find the highest similarity
between a GBM (glioblastoma) sample and PAAD (pancreatic adenocarcinoma) sample.
The net highest similarity is between a LGG (lower-grade glioma) sample and the
same PAAD sample. (Recall that our query above had, somewhat randomly, chosen
only GBM, LGG, and PAAD tumor-specific projects.)

[image: ../_images/april_table1.png]

[image: ../_images/april_plot2.png]
Fig1. Each dot represents a pair of cases and the associated Jaccard index. The blue points show the pairs that involve the GBM case TCGA-06-5416.

Those unions look high to me. Let’s double check them.

--
--
WITH
 g1 AS (
 SELECT
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND case_barcode = 'TCGA-06-5416'
 GROUP BY
 Hugo_Symbol),
--
--
--
 g2 AS (
 SELECT
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 AND case_barcode = 'TCGA-IB-7651'
 GROUP BY
 Hugo_Symbol)

--
-- First the intersection,
--
SELECT
 count (distinct a.Hugo_Symbol) AS n
FROM
 g1 AS a
JOIN
 g2 AS b
ON
 a.Hugo_Symbol = b.Hugo_Symbol

UNION ALL -- to bring the intersection and union queries together

--
-- then the union.
--
SELECT
 count (distinct Hugo_Symbol) AS n
FROM
 (select * from g1
 union all
 select * from g2)

ORDER BY n

The above query returns 2277 (intersection) and 8821 (union), which is
what we were expecting given the first row in the previous set of results.

Next we’ll turn our attention to the COSMIC catalog. We will select a single
sample, and perform the same Jaccard index across all samples in COSMIC
(removing TCGA samples in COSMIC), and see what comes up.
The sample we’ve selected for this next analysis is from the COAD project
(Colon Adenocarcinoma).

Similar to the MC3 table, variants in COSMIC have been annotated.
Let’s take a look at what types of variants are present.

--
-- What kind of mutations are found in COSMIC?
--
SELECT
 Mutation_Description,
 count(1) AS n
FROM
 `isb-cgc.COSMIC.grch37_v80`
GROUP BY
 Mutation_Description
ORDER BY n DESC

	Row

	Mutation_Description

	n

	1

	Substitution - Missense

	3115431

	2

	Substitution - coding silent

	1017162

	3

	Substitution - Nonsense

	204293

	4

	Unknown

	167135

	5

	Deletion - Frameshift

	113237

	6

	Insertion - Frameshift

	51345

	7

	Deletion - In frame

	37833

	8

	Insertion - In frame

	24870

	9

	Complex - deletion inframe

	3212

	10

	Nonstop extension

	2751

	…

	…

	…

So, like above, we will focus on the most common type of variant, the Missense.

 --
 -- First we'll select a single TCGA sample, with filters similar to the above.
 --
WITH
 --
 tcgaSample AS (
 SELECT
 sample_barcode_tumor,
 Hugo_Symbol
 FROM
 `isb-cgc.TCGA_hg19_data_v0.Somatic_Mutation_MC3`
 WHERE
 sample_barcode_tumor = 'TCGA-CA-6718-01A'
 AND Variant_Type = 'SNP'
 AND Consequence = 'missense_variant'
 AND biotype = 'protein_coding'
 AND (REGEXP_CONTAINS(PolyPhen, 'damaging')
 OR REGEXP_CONTAINS(SIFT, 'deleterious'))
 GROUP BY
 sample_barcode_tumor,
 Hugo_Symbol),
 --
 -- Then we'll create a sub-table of COSMIC samples, sans TCGA.
 --
 cosmicSample AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name
 FROM
 `isb-cgc.COSMIC.grch37_v80`
 WHERE
 STARTS_WITH(Sample_name, "TCGA") = FALSE
 AND Mutation_Description = 'Substitution - Missense'
 AND FATHMM_prediction = "PATHOGENIC"
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 Gene_name),
 --
 -- Then we make the array of genes for the TCGA sample.
 --
 tcgaSampleArray AS (
 SELECT
 sample_barcode_tumor,
 ARRAY_AGG(DISTINCT Hugo_Symbol) AS geneArray
 FROM
 tcgaSample
 GROUP BY
 sample_barcode_tumor),
 --
 -- Then we make the array of genes for each cosmic sample.
 --
 cosmicSampleArray AS (
 SELECT
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source,
 ARRAY_AGG(DISTINCT Gene_name) AS geneArray
 FROM
 cosmicSample
 GROUP BY
 Sample_name,
 Primary_site,
 Primary_histology,
 Sample_source),
 --
 -- Next we can perform our set operations on the arrays.
 --
 setOpsTable AS (
 SELECT
 a.sample_barcode_tumor AS tcgaSample,
 b.Sample_name AS cosmicSample,
 b.Primary_site,
 b.Primary_histology,
 b.Sample_source,
 ARRAY_LENGTH(a.geneArray) AS length1,
 ARRAY_LENGTH(b.geneArray) AS length2,
 (SELECT COUNT(1) FROM UNNEST(a.geneArray) AS ga JOIN UNNEST(b.geneArray) AS gb ON ga = gb) AS gene_intersection,
 (SELECT COUNT(DISTINCT gx) FROM UNNEST(ARRAY_CONCAT(a.geneArray,b.geneArray)) AS gx) AS gene_union
 FROM
 tcgaSampleArray AS a
 JOIN
 cosmicSampleArray AS b
 ON
 a.sample_barcode_tumor < b.Sample_name)
 --
 -- And build our final results.
 --
SELECT
 tcgaSample,
 length1 AS geneCount1,
 cosmicSample,
 Primary_site,
 Primary_histology,
 Sample_source,
 length2 AS geneCount2,
 gene_intersection AS intersection,
 gene_union,
 (gene_intersection / gene_union) AS jaccard_index
FROM
 setOpsTable
WHERE
 (gene_intersection / gene_union) > 0.00
 AND gene_intersection > 5
 AND gene_union > 5
ORDER BY
 jaccard_index DESC

Recall that the TCGA-CA-6718-01A sample is from the COAD (colon adenocarcinoma) TCGA project.

[image: ../_images/april_table2.png]

Cool – the top COSMIC (non-TCGA) hit is from a very similar tumor type!
The other close matches are all from melanoma, a cancer with a very high
mutation rate which might result in “noisy” associations at this level.

Since the two mutation tables that we are comparing here (TCGA MC3 and COSMIC) use different
scores for assessing the implications of each somatic mutation, another idea would be
to integrate the
Tute Genomics [https://en.wikipedia.org/wiki/Tute_Genomics]
hg19 annotation table [https://bigquery.cloud.google.com/table/silver-wall-555:TuteTable.hg19?pli=1&tab=schema]
so that a single score can be used
in assessing the intersection of mutated genes between two cancer samples.

Thanks for joining us this month!

March, 2017

This month we’re going to compute a pairwise distance matrix and visualize
it using a heatmap in R. Many methods, such as clustering, depend on having a
distance matrix, and although I would not recommend using BigQuery to download
large tables, this works well for smaller feature sets (10s-100s).

In this example, we will be selecting primary tumor samples from both BRCA
and STAD cohorts, along with a list of the top 50 most variable miRNAs.
Then we’ll compute a pairwise distance metric on samples. The distance will
be based on Spearman’s correlation.

As usual, we are going to be using standard SQL, so make sure to select that
option.

WITH
 --
 -- *sample_lists*
 -- First, start by defining the list of BRCA TP samples.
 -- (TP == tumor, primary)
 --
 brca_sample_list AS (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_201607_beta.Biospecimen_data`
 WHERE
 SampleTypeLetterCode='TP'
 AND Study='BRCA'
 LIMIT
 50),
 --
 -- Then let's create a list of STAD samples.
 --
 stad_sample_list AS (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_201607_beta.Biospecimen_data`
 WHERE
 SampleTypeLetterCode='TP'
 AND Study='STAD'
 LIMIT
 50),
 --
 -- Now, we are going to merge the two sample tables using a UNION ALL.
 --
 sample_list AS (
 select * from stad_sample_list
 UNION ALL
 select * from brca_sample_list
),
 --
 -- *miRNA_list*
 -- Next, we define the miRNAs of interest. We order the miRNAs by standard
 -- deviation, then take the top 50. Notice we select value from the
 -- subset defined above.
 --
 miRNA_list AS (
 SELECT
 mirna_accession,
 STDDEV(normalized_count) AS sigma_count
 FROM
 `isb-cgc.tcga_201607_beta.miRNA_Expression`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 sample_list)
 GROUP BY
 mirna_accession
 ORDER BY
 sigma_count DESC
 LIMIT
 50),
 --
 -- *miRNA_data*
 -- Now that we have the sample_list and the mirna_list, we can select our
 -- data of interest from the larger miRNA_Expression table.
 --
 miRNA_data AS (
 SELECT
 SampleBarcode,
 Study,
 mirna_id,
 mirna_accession,
 LOG10(normalized_count+1) AS log10_count
 FROM
 `isb-cgc.tcga_201607_beta.miRNA_Expression`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 sample_list)
 AND mirna_accession IN (
 SELECT
 mirna_accession
 FROM
 miRNA_list)),
 --
 -- *pairs*
 -- Now, we JOIN the miRNA_data matrix with *itself*, creating all possible pairs of samples
 -- (excluding self-comparisons which are unnecessary) combined with a dense-ranking of
 -- the miRNA expression values. By computing the Pearson correlation on ranks, we
 -- end up with Spearman's correlation!
 --
 pairs AS (
 SELECT
 lhs.mirna_id,
 lhs.mirna_accession,
 lhs.SampleBarcode AS SampleA,
 rhs.SampleBarcode AS SampleB,
 lhs.Study AS StudyA,
 rhs.Study as StudyB,
 DENSE_RANK() OVER (PARTITION BY lhs.mirna_accession ORDER BY lhs.log10_count ASC) AS ExpA,
 DENSE_RANK() OVER (PARTITION BY rhs.mirna_accession ORDER BY rhs.log10_count ASC) AS ExpB
 FROM
 miRNA_data AS lhs
 JOIN
 miRNA_data AS rhs
 ON
 lhs.mirna_accession=rhs.mirna_accession
 AND lhs.SampleBarcode < rhs.SampleBarcode)
 --
 -- **Finally**, we compute the pairwise distance between each pair of samples.
 --
SELECT
 SampleA,
 SampleB,
 StudyA,
 StudyB,
 COUNT(mirna_accession) AS numObs,
 (1.-CORR(ExpA, ExpB)) AS sampleDistance
FROM
 pairs
GROUP BY
 SampleA,StudyA,
 SampleB,StudyB
ORDER BY
 sampleDistance ASC

Now, let’s see that distance matrix in R!

library(bigrquery) # make sure it's a recent version with the useLegacySql param!#

q <- "The Query From Above"

corrs <- query_exec(q, project="YOUR PROJECT ID", useLegacySql=F)

Use bigrquery to get the results or export the results to cloud storage and
download them like so.
gcs_url <- "gs://MY-BUCKET/MY-FILE.csv"
corrs <- read.csv(pipe(sprintf("gsutil cat %s", gcs_url)))

library(dplyr)
library(ggplot2)
library(pheatmap)

mat <- xtabs(sampleDistance~SampleA+SampleB, data=corrs)
or tidyr::spread(data=corrs, key=SampleA, value=sampleDistance, fill=0)

dim(mat) # 99 x 99

Make the matrix symmetric.
mat2 <- mat + t(mat)

Let's make an annotation matrix for cancer type
studyMat <- unique(corrs[,c("StudyA", "SampleA")])
studyMat$color <- ifelse(studyMat$Study == "BRCA", "blue", "red")
rownames(studyMat) <- studyMat$SampleA

We can show the distances between samples as a dendrogram
install.packages("dendextend")
library(dendextend)
hc <- hclust(as.dist(mat2), method="ward.D2")
dend <- as.dendrogram(hc)
labels_colors(dend) <- studyMat[labels(dend), "color"]
dend <- set(dend, "labels_cex", 0.5)

Fig1
plot(dend, main="BRCA in clue and STAD in red")

If we want to make two groups, then we cut the dendrogram
leaving two branches.
cas <- cutree(tree=hc, k=2)

Then we can use our cluster labels to annotate the heatmap.
annotMat <- data.frame(cluster=cas)
annotMat$SampleID <- names(cas)
rownames(annotMat) <- names(cas)
annotMat <- merge(x=annotMat, by.x="SampleID", y=studyMat, by.y="SampleA")
rownames(annotMat) <- annotMat$SampleID

And we can plot cluster assignments on a heatmap
to see how hclust-default and pheatmap-defaults compare.

Fig2
pheatmap(mat2, fontsize=6, annotation=annotMat[,-1])

Or we can use the dendsort library (from pheatmap examples)
library(dendsort)
callback = function(hc, ...){dendsort(hc)}

Fig3
pheatmap(mat2, fontsize=6, annotation=annotMat[,-1], clustering_callback = callback)

Modify ordering of the clusters using clustering callback option
callback = function(hc, mat){
 sv = svd(t(mat))$v[,1]
 dend = reorder(as.dendrogram(hc), wts = sv)
 as.hclust(dend)
}
Fig4
pheatmap(mat2, clustering_callback = callback, annotation=annotMat[,-1],
 fontsize_row=4, fontsize_col=4, border_color=NA)

[image: ../_images/brca_vs_stad_dendrogram.png]
Fig1. Dendrogram showing the sample-wise relationships based on miRNA expression.

[image: ../_images/brca_vs_stad_heatmap.png]
Fig2. Heatmap of pairwise distances, using pheatmap default clustering.

[image: ../_images/brca_vs_stad_heatmap_2.png]
Fig3. Heatmap of pairwise distances, using the dendsort library.

[image: ../_images/brca_vs_stad_heatmap_3.png]
Fig4. Ordering the samples after singular value decomposition.

February, 2017

This month, we explore user defined functions or UDFs. BigQuery allows
you to define custom functions, things that you can’t easily do in standard SQL, using JavaScript.
These functions are defined as
part of the SQL and then called within the query.

UDFs take a set of parameters, and return a value. They are strongly typed functions,
which means that we need to define the types of inputs and outputs. For example,
we might have FLOAT64 and BOOL input types and return a STRING.
See the official
Google documentation [https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions]
for the complete list of available types. (Note in particular that there is
no INT64 type, so you will need to use either FLOAT64 or STRING when
working with integers, depending on your needs.)

In our first example, we’ll define two new functions. The first classifies a sample
as having a higher expression value than a given input level. And second, a function
that glues three strings together. Then, in the SQL query we call both functions.
These initial queries will be starting points for a more complicated example below.

These queries use Standard SQL, so if you’re in the web interface,
remember to open the options panel and uncheck the ‘Use Legacy SQL’ button.

-- this next line tells BigQuery that a UDF is coming
CREATE TEMPORARY FUNCTION
 -- followed by the function name and parameter names/types:
 BiggerThan (x FLOAT64, y FLOAT64)
 -- and then the return type
 RETURNS BOOL
 -- and the language
 LANGUAGE js AS """
 // careful to use this delimiter for comments inside the function
 return (x > y);
 """;

-- now let's create another function that takes 3 input strings
-- combines them, using underscores and returns a single string:
CREATE TEMPORARY FUNCTION
 Combiner (x STRING, y STRING, z STRING)
 RETURNS STRING
 LANGUAGE js AS """
 return (x + "_" + y + "_" + z);
 """;

--
-- Now that we've defined our two UDFs, we can use them.
-- But first we're going to create an intermediate table
-- with the expression of ESR1 in the BRCA samples:
--
WITH
 gene1 AS (
 SELECT
 AliquotBarcode AS barcode1,
 Study AS study1,
 SampleTypeLetterCode AS code1,
 HGNC_gene_symbol AS gene_id1,
 AVG(LOG(normalized_count+1, 2)) AS count1
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol = 'ESR1'
 AND normalized_count >= 0
 GROUP BY
 AliquotBarcode,
 gene_id1,
 study1,
 code1)

--
--
-- Now we can call our functions,
-- processing the subtable.
--
SELECT
 Combiner(barcode1, study1, code1) AS cString,
 BiggerThan(count1, 5.1) AS overExp
FROM
 gene1

OK, so that was just warm-up, and obviously what was being done with
the UDFs could have been done in SQL as well. But now we’re going to
do something a bit more complicated(!), and estimate cluster assignments
using a K-means algorithm
(wikipedia [https://en.wikipedia.org/wiki/K-means_clustering]),
implemented in JavaScript, as a UDF!

We’re going to try to cluster each BRCA sample based on the expression of
two genes: ESR1 and EGFR. This type of clustering is implemented as an iterative process
that starts with two random cluster centers. In each iteration, each sample is labeled
according to the nearest cluster-center, and then we recompute the locations of the
cluster centers.

CREATE TEMPORARY FUNCTION

 -- In this function, we're going to be working on arrays of values.
 -- we're also going to define a set of functions 'inside' the kMeans.

 -- *heavily borrowing from https://github.com/NathanEpstein/clusters* --

 kMeans(x ARRAY<FLOAT64>, -- ESR1 gene expression
 y ARRAY<FLOAT64>, -- EGFR gene expression
 iterations FLOAT64, -- the number of iterations
 k FLOAT64) -- the number of clusters

 RETURNS ARRAY<FLOAT64> -- returns the cluster assignments

 LANGUAGE js AS """
 'use strict'

 function sumOfSquareDiffs(oneVector, anotherVector) {
 // the sum of squares error //
 var squareDiffs = oneVector.map(function(component, i) {
 return Math.pow(component - anotherVector[i], 2);
 });
 return squareDiffs.reduce(function(a, b) { return a + b }, 0);
 };

function mindex(array) {
 // returns the index to the minimum value in the array
 var min = array.reduce(function(a, b) {
 return Math.min(a, b);
 });
 return array.indexOf(min);
};

function sumVectors(a, b) {
 // The map function gets used frequently in JavaScript
 return a.map(function(val, i) { return val + b[i] });
};

function averageLocation(points) {
 // Take all the points assigned to a cluster
 // and find the averge center point.
 // This gets used to update the cluster centroids.
 var zeroVector = points[0].location.map(function() { return 0 });
 var locations = points.map(function(point) { return point.location });
 var vectorSum = locations.reduce(function(a, b) { return sumVectors(a, b) }, zeroVector);
 return vectorSum.map(function(val) { return val / points.length });
};

function Point(location) {
 // A point object, each sample is represented as a point //
 var self = this;
 this.location = location;
 this.label = 1;
 this.updateLabel = function(centroids) {
 var distancesSquared = centroids.map(function(centroid) {
 return sumOfSquareDiffs(self.location, centroid.location);
 });
 self.label = mindex(distancesSquared);
 };
};

function Centroid(initialLocation, label) {
 // The cluster centroids //
 var self = this;
 this.location = initialLocation;
 this.label = label;
 this.updateLocation = function(points) {
 var pointsWithThisCentroid = points.filter(function(point) { return point.label == self.label });
 if (pointsWithThisCentroid.length > 0) {
 self.location = averageLocation(pointsWithThisCentroid);
 }
 };
};

var data = [];

// Our data list is list of lists. The small list being each (x,y) point
for (var i = 0; i < x.length; i++) {
 data.push([x[i],y[i]])
}

// initialize point objects with data
var points = data.map(function(vector) { return new Point(vector) });

// intialize centroids
var centroids = [];
for (var i = 0; i < k; i++) {
 centroids.push(new Centroid(points[i % points.length].location, i));
};

// update labels and centroid locations until convergence
for (var iter = 0; iter < iterations; iter++) {
 points.forEach(function(point) { point.updateLabel(centroids) });
 centroids.forEach(function(centroid) { centroid.updateLocation(points) });
};

// return the cluster labels.
var labels = []
for (var i = 0; i < points.length; i++) {
 labels.push(points[i].label)
}

return labels;

""";
--
-- *** In this query, we create two subtables, one for each gene of
-- interest, then create a set of arrays in joining the two tables.
-- We call the UDF using the arrays, and get a result back
-- made of arrays.
--
-- Due to a technical issue we save the table of arrays to
-- to a personal dataset, then unpack it. ***
--
WITH
 -- gene1, the first subtable
 --
 gene1 AS (
 SELECT
 ROW_NUMBER() OVER() row_number,
 AliquotBarcode AS barcode1,
 HGNC_gene_symbol AS gene_id1,
 AVG(LOG(normalized_count+1, 2)) AS count1
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol = 'ESR1'
 AND normalized_count >= 0
 GROUP BY
 AliquotBarcode,
 gene_id1),
 --
 -- gene2, the second subtable
 --
 gene2 AS (
 SELECT
 AliquotBarcode AS barcode2,
 HGNC_gene_symbol AS gene_id2,
 AVG(LOG(normalized_count+1, 2)) AS count2
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 Study = 'BRCA'
 AND SampleTypeLetterCode = 'TP'
 AND HGNC_gene_symbol = 'EGFR'
 AND normalized_count >= 0
 GROUP BY
 AliquotBarcode,
 HGNC_gene_symbol),
 --
 -- Then we create a table of arrays
 -- and join the two gene tables.
 -- ** We need to make sure all the arrays are constructed using the same index. **
 --
 arrayTable AS (
 SELECT
 ARRAY_AGG(m1.row_number ORDER BY m1.barcode1) AS arrayn,
 ARRAY_AGG(m1.barcode1 ORDER BY m1.barcode1) AS barcode,
 ARRAY_AGG(count1 ORDER BY m1.barcode1) AS esr1,
 ARRAY_AGG(count2 ORDER BY m1.barcode1) AS egfr
 FROM
 gene1 AS m1
 JOIN
 gene2 AS m2
 ON
 m1.barcode1 = m2.barcode2)
 --
 -- Now we call the k-means UDF.
 --
SELECT
 arrayn,
 barcode,
 esr1,
 egfr,
 kMeans(esr1, egfr, 200.0, 2.0) AS cluster
FROM
 arrayTable
 --
 -- save the resulting table to a personal dataset

We need to save the above results to an intermediate table. You will
need to have a dataset that you have write-access to in BigQuery
to do this. For your convenience, we’ve saved the query above as
a public gist [https://gist.github.com/smrgit/c80fd361603f8a7efa5d0444757c990b]
and also created a bitly link to it. Rather than pasting the entire
script into the BigQuery web UI, you can us the bq command line
(part of the cloud SDK [https://cloud.google.com/sdk/])
and run the query and automatically save the outputs as shown below.

#!/bin/bash

qFile="kMeans_in_BQ.sql"
get the lengthy query from the bitly link, and rename
wget -O $qFile http://bit.ly/2mn1R5D

before you can run this you will need to modify
the destination table to be in a project and dataset
that you have write-access to,
eg: dTable="isb-cgc:scratch_dataset.kMeans_out"
dTable="YOUR_PROJECT:DATASET_NAME.TMP_TABLE"

run the query using the 'bq' command line tool
not all of the options are strictly necessary -- with
the exception of "nouse_legacy_sql"
bq query --allow_large_results \
 --destination_table=$dTable \
 --replace \
 --nouse_legacy_sql \
 --nodry_run \
 "$(cat $qFile)" > /dev/null

The results of the kMeans query is one row of arrays.
It’s a little tricky to unpack the arrays into rows, which is what the next query does.
(Again you’ll need to edit it to select from the intermediate table you created
in the previous step. Remember that in Standard SQL, the delimiter between the
project name and the dataset name is just a ‘.’ whereas the bq command-line
requres a ‘:’ as a separator.)

WITH
 resultTable AS (
 SELECT
 *
 FROM
 `YOUR_PROJECT.DATASET_NAME.TMP_TABLE`)
SELECT
 index row_idx,
 barcode[OFFSET(index_offset)] AS AliquotBarcode,
 esr1[OFFSET(index_offset)] AS ESR1,
 egfr[OFFSET(index_offset)] AS EGFR,
 cluster[OFFSET(index_offset)] AS Cluster
FROM
 resultTable,
 UNNEST(resultTable.arrayn) AS index
WITH
OFFSET
 index_offset
ORDER BY
 index

Finall let’s visualize the resulting clusters!
Save the cluster assignments to a csv file, and read it into R.

library(ggplot2)
res0 <- read.table("results-from-the-k-means.csv", sep=",", header=T, stringsAsFactors=F)
qplot(data=res0, x=EGFR, y=ESR1, col=as.factor(Cluster))

[image: ../_images/kmeans_plot.png]

January, 2017

This month we’ll be comparing Standard SQL and Legacy SQL. It’s possible to write
queries using either form, but as we’ll see, using standard SQL can be easier to write
and improves readability.

In order to ‘activate’ standard SQL in the web browser, just under the
‘New Query’ text window, click the ‘Show Options’ button, and towards the bottom of the
options you’ll find the ‘Use Legacy SQL’ check box – uncheck that, and then you can
‘Hide Options’ to collapse the options away again.

To use R and bigrquery to execute
standard SQL, you’ll need to make sure you’re using the most up-to-date
version of the R package. I would recommend installing it from the github page
using devtools. Please see bigrquery [https://github.com/rstats-db/bigrquery] for more information
on installation. The important bit: there’s now support for sending a parameter
called ‘useLegacySql’ in the REST calls.

Our task this month will be to compute correlations between copy number variants and gene expression, over
all genes, using only BRCA samples. The copy number data is expressed in a series
of segments, each with a chromosome, start-point, end-point, and value
indicating whether a duplication or deletion event (or neither) has taken place.

Note that the mean copy-number values are not discrete because these data represent
heterogeneous mixtures of cells – only a fraction of the cells might include an
amplification or a deletion, so the ‘mean copy-number’ value represents the
effect of the discrete amplifications or deletions of a specific genomic segment,
averaged over the heterogenous population of cells.

One might hypothesize that a copy number amplified gene would have higher expression levels
than when not amplified. However, our gene expression data has no location information, making it
necessary to join the genomic locations from an appropriate reference.
The resulting annotated expression table can then be joined to the copy number segments.
But computing the overlap of DNA segments and genes locations can get tricky!
Below we show two different ways of accomplishing the task.

Data Tables

You can get familiar with the data sources by opening the BigQuery web interface
and taking a preview of the tables.

	isb-cgc.tcga_cohorts.BRCA … Curated cohort table for TCGA BRCA study: 1087 unique patients and 2236 unique samples.

	isb-cgc.genome_reference.GENCODE_v19 … This table is based on release 19 of the GENCODE reference gene set. Note that these annotations are based on the hg19/GRCh37 reference genome.

	isb-cgc.tcga_201607_beta.mRNA_UNC_HiSeq_RSEM … This table contains all mRNA expression data produced by the UNC-LCCC (Lineberger Comprehensive Cancer Center) using the Illumina HiSeq platform and processed through their RNASeqV2 / RSEM pipeline.

	isb-cgc.tcga_201607_beta.Copy_Number_segments … This table contains one row for each copy-number segment identified for each TCGA aliquot. Affymetrix SNP6 data is used in making the calls.

Legacy SQL

This query makes use of a legacy UDF or 'user defined function'.
To define UDFs in R, we need to define it 'inline'.
For another example of inline definitions, see:
https://github.com/googlegenomics/bigquery-examples/blob/master/pgp/sql/schema-comparisons/missingness-udf.sql

Big legacy SQL queries grow like onions, they start in the center,
and grow in layers, until the outer-most select statement returns the result.
And like onions, they will make you cry.

SELECT
 # Here's the final select statement, computing Pearson's correlation
 # on the avgCNsegMean, the copy number mean for a particular gene
 # and avglogExp, the average expression for the same gene.
 gene,
 chr,
 CORR(avgCNsegMean,avglogExp) AS corr,
 COUNT(*) AS n
FROM (

 SELECT
 # This is the select statement on the joined CN and expr tables,
 # where averages are computed on copy number and expression.
 annotCN.gene AS gene,
 annotCN.chr AS chr,
 annotCN.SampleBarcode AS SampleBarcode,
 AVG(annotCN.CNsegMean) AS avgCNsegMean,
 AVG(exp.logExp) AS avgLogExp
 FROM (

 SELECT
 # This is the select statement that annotates the CN segments via binning.
 # To annotate the segments, the CN segment start and end positions are binned,
 # as well as the gene reference information.
 # The bins provide a sort of grid that can be used for aligning the segments
 # to gene locations.
 geneInfo.gene AS gene,
 geneInfo.chr AS chr,
 geneInfo.region_start AS gene_start,
 geneInfo.region_end AS gene_end,
 geneInfo.bin AS bin,
 cnInfo.SampleBarcode AS SampleBarcode,
 cnInfo.Segment_Mean AS CNsegMean,
 cnInfo.region_start AS cn_start,
 cnInfo.region_end AS cn_end
 FROM (
 SELECT
 label AS gene,
 chr,
 region_start,
 region_end,
 bin
 FROM js (# This User-defined function bins the genome making the join possible.

 (SELECT
 gene_name AS label,
 FLOAT(start) AS value,
 LTRIM(seq_name,\"chr\") AS chr,
 start AS region_start,
 END AS region_end
 FROM
 [isb-cgc:genome_reference.GENCODE_v19]
 WHERE
 feature=\"gene\"
 AND gene_status=\"KNOWN\"
 AND source=\"HAVANA\"),

 label, value, chr, region_start, region_end,

 \"[{'name': 'label', 'type': 'string'}, // Output schema
 {'name': 'value', 'type': 'float'},
 {'name': 'chr', 'type': 'string'},
 {'name': 'region_start', 'type': 'integer'},
 {'name': 'region_end', 'type': 'integer'},
 {'name': 'bin', 'type': 'integer'}]\",

 \"function binIntervals(row, emit) {
 // This is JavaScript ... here we use '//' for comments
 // Legacy UDFs take a single row as input.
 // and return a row.. can be a different number of columns.
 var binSize = 10000; // Make sure this matches the value in the SQL (if necessary)
 var startBin = Math.floor(row.region_start / binSize);
 var endBin = Math.floor(row.region_end / binSize);

 // Since an interval can span multiple bins, emit
 // a record for each bin it spans.
 for(var bin = startBin; bin <= endBin; bin++) {
 emit({label: row.label,
 value: row.value,
 chr: row.chr,
 region_start: row.region_start,
 region_end: row.region_end,
 bin: bin,
 });
 }
 }\")) AS geneInfo

 JOIN EACH (
 # This is the join between the binned CNs, and the binned gene reference. #

 SELECT
 # This is the select statement that bins the gene reference information
 label AS SampleBarcode,
 value AS Segment_Mean,
 chr,
 region_start,
 region_end,
 bin
 FROM (js (
 (SELECT
 SampleBarcode AS label,
 Segment_Mean AS value,
 Chromosome AS chr,
 start AS region_start,
 END AS region_end
 FROM
 [isb-cgc:tcga_201607_beta.Copy_Number_segments]
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 [isb-cgc:tcga_cohorts.BRCA])),

 label,value,chr,region_start,region_end,

 \"[{'name': 'label', 'type': 'string'},
 {'name': 'value', 'type': 'float'},
 {'name': 'chr', 'type': 'string'},
 {'name': 'region_start', 'type': 'integer'},
 {'name': 'region_end', 'type': 'integer'},
 {'name': 'bin', 'type': 'integer'}]\",

 \"function binIntervals(row, emit) {
 // This is JavaScript ... here we use '//' for comments
 // Legacy UDFs take a single row as input.
 var binSize = 10000; // Make sure this matches the value in the SQL (if necessary)
 var startBin = Math.floor(row.region_start / binSize);
 var endBin = Math.floor(row.region_end / binSize);
 // Since an interval can span multiple bins, emit
 // a record for each bin it spans.
 for(var bin = startBin; bin <= endBin; bin++) {
 emit({label: row.label,
 value: row.value,
 chr: row.chr,
 region_start: row.region_start,
 region_end: row.region_end,
 bin: bin,
 });
 }
 }\"
))) AS cnInfo
 ON
 (geneInfo.chr = cnInfo.chr)
 AND (geneInfo.bin = cnInfo.bin)) AS annotCN

 JOIN EACH (
 # Here's the join between annotated copy number table and the gene expression table.

 SELECT
 # Here we get the gene expression data, and barcodes.
 # We join on the SampleBarcodes in each table.
 SampleBarcode,
 HGNC_gene_symbol,
 LOG2(normalized_count+1) AS logExp
 FROM
 [isb-cgc:tcga_201607_beta.mRNA_UNC_HiSeq_RSEM]
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 [isb-cgc:tcga_cohorts.BRCA])) AS exp
 ON
 (exp.HGNC_gene_symbol = annotCN.gene)
 AND (exp.SampleBarcode = annotCN.SampleBarcode)
 GROUP BY
 gene,
 chr,
 SampleBarcode)
GROUP BY
 gene,
 chr
HAVING
 corr IS NOT NULL
ORDER BY
 corr DESC

Standard SQL

In standard SQL, we define a list of tables, that can build
off earlier definitions, so it's a little more linear and modular.

WITH
This says: "we're going to define a list of tables WITH which we will perform subsequent SELECTs..."

 geneInfo AS (
 # First table: the gene reference information
 SELECT
 gene_name AS gene,
 LTRIM(seq_name,'chr') AS chr,
 `start` as region_start,
 `end` as region_end
 FROM
 `isb-cgc.genome_reference.GENCODE_v19`
 WHERE
 feature='gene'
 AND gene_status='KNOWN'
 AND source = 'HAVANA'),

cnInfo AS(
 # Second: the copy number data, but only for the BRCA samples (note the sub-query).
 SELECT
 SampleBarcode,
 Segment_Mean,
 Chromosome AS chr,
 `start` AS region_start,
 `end` AS region_end
 FROM
 `isb-cgc.tcga_201607_beta.Copy_Number_segments`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_cohorts.BRCA`)),

gexp AS (
 # Third: we get the gene expression data, again only for the BRCA samples
 # included is a LOG() transform as well as an AVG() aggregation function
 # which will only be relevant if there are multiple expression values for
 # a single (gene,sample) pair.
 SELECT
 SampleBarcode,
 HGNC_gene_symbol,
 AVG(LOG(normalized_count+1,2)) AS logExp
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_HiSeq_RSEM`
 WHERE
 SampleBarcode IN (
 SELECT
 SampleBarcode
 FROM
 `isb-cgc.tcga_cohorts.BRCA`)
 GROUP BY
 SampleBarcode,
 HGNC_gene_symbol),

cnAnnot AS (
 # Now, we start to re-use previously defined tables. Here, we annotate
 # the copy-number segments by JOINing on matching chromosomes and
 # looking for overlapping regions between the copy-number segments and
 # the gene regions previously obtained from the GENCODE_v19 table.
 SELECT
 geneInfo.gene AS gene,
 geneInfo.chr AS chr,
 geneInfo.region_start AS gene_start,
 geneInfo.region_end AS gene_end,
 cnInfo.SampleBarcode AS SampleBarcode,
 AVG(cnInfo.Segment_Mean) AS Avg_CNsegMean
 FROM
 cnInfo JOIN geneInfo
 ON
 (geneInfo.chr = cnInfo.chr)
 WHERE
 (cnInfo.region_start BETWEEN geneInfo.region_start AND geneInfo.region_end) OR
 (cnInfo.region_end BETWEEN geneInfo.region_start AND geneInfo.region_end) OR
 (cnInfo.region_start < geneInfo.region_start AND cnInfo.region_end > geneInfo.region_end)
 GROUP BY
 gene,
 chr,
 gene_start,
 gene_end,
 SampleBarcode
),

bigJoin AS (
 # This is essentially the final step: in this last table definition, we make
 # a big join between the annotated copy-number table with the gene-expression
 # table and use the built-in CORR() function to compute a Pearson correlation.
 SELECT
 cnAnnot.gene AS gene,
 cnAnnot.chr AS chr,
 CORR(cnAnnot.Avg_CNsegMean,gexp.logExp) AS corr_cn_gexp,
 count(*) as n
 FROM
 cnAnnot join gexp
 ON
 (gexp.HGNC_gene_symbol = cnAnnot.gene)
 AND (gexp.SampleBarcode = cnAnnot.SampleBarcode)
 GROUP BY
 gene,
 chr
)

Finally, let's pull down all the rows!
select *
from bigJoin

R script

Here, we're going to execute the two above queries, and see how
the correlations compare.

library(bigrquery)
library(ggplot2)

my_project_id <- "xyz"

q_legacy <- " ... first query above"

q_std <- " ... second query from above ..."

legacy_res <- query_exec(q_legacy, project=my_project_id, useLegacySql=T)

std_res <- query_exec(q_std, project=my_project_id, useLegacySql=F)

res0 <- merge(legacy_res, std_res, by="gene")

dim(std_res)
#[1] 18447 4

dim(legacy_res)
#[1] 18424 4

dim(res0)
#[1] 18424 7

qplot(data=res0, x=corr_cn_gexp, y=corr, main="CN and Expr correlation in BRCA",
 xlab="Standard SQL", ylab="Legacy SQL")

[image: ../_images/jan_results.png]

This plot shows the correlations found using the Legacy SQL solution (y-axis) compared
to the correlations found using the Standard SQL solution (x-axis). Note that an exact
match between the two methods was not expected because the implementation is not identical.
The “legacy” solution bins the copy-number segment values into uniform length genomic
segments, while the “standard” solution takes a simpler approah.

December, 2016

The ISB-CGC team is starting to add the new hg38-based TCGA data available from the
NCI-GDC Data Portal [https://gdc-portal.nci.nih.gov/] and one of the first obvious questions
might be: how does the new hg38 expression data compare to the hg19 data?

Description

This is exactly the type of question that the ISB-CGC resources and the BigQuery engine
were made to answer. In a single SQL query, we will compare two sets of gene-level
expression estimates based on RNA-Seq data.
The first set consists of the hg19-based
RSEM [http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-323]
normalized gene-level
expression values previously available from the TCGA DCC and now available in
an easy-to-use table in BigQuery (and also from the
NCI-GDC Legacy Archive [https://gdc-portal.nci.nih.gov/legacy-archive]).
The second set was produced by the
NCI-GDC mRNA Analysis Pipeline [https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/]
which includes a STAR alignment to hg38, and gene expression quantification using
HTSeq [http://www-huber.embl.de/HTSeq/doc/overview.html]
(with annotation based on
GENCODE v22 [http://www.gencodegenes.org/releases/22.html]).

Rather than look at one gene at a time, it’s easy (and fast!) to compute correlations
for all genes simultaneously. Note that this is done in a single query. You do not
want to loop over all of the genes, computing one correlation at a time because the
cost of a BigQuery query depends primarily on the amount of data scanned during the
query, and since the data for all genes across all TCGA samples are in a single
table, if you were to loop over 10,000 genes running one query per gene, your costs would
go up by a factor of 10,000! As we show below, BigQuery computes across all the genes
at once (one of its benefits), and thus keeps the costs low.

In addition to using the two gene-expression data tables, our SQL query also
uses the GENCODE_v22 table (one of many tables in the isb-cgc.genome_reference dataset)
to map from the HGNC gene symbol (used in the older hg19 expression table) to the
Ensembl gene identifier (used in the new hg38 expression table).

The query below performs both
Pearson and Spearman correlations for each gene.
The result is a table with 20,021 rows – one for each gene, with the Ensembl gene
identifier, the gene symbol, the Pearson and Spearman correlation coefficients,
and the difference between the two. The table has also been sorted by the
Spearman coefficient, in descending order. This query executes in less than
one minute and processes a total of 34 GB of data. This is a great example of how cloud
computing can significantly enhance analytic capabilities beyond running large analytic
bioinformatics pipelines quickly!

Back in June, Google
announced [https://cloud.google.com/blog/big-data/2016/06/bigquery-111-now-with-standard-sql-iam-and-partitioned-tables]
full support for Standard SQL in BigQuery. The query below makes use of Standard SQL,
so if you want to try running this query yourself by cutting-and-pasting it into the
BigQuery web UI [https://bigquery.cloud.google.com] you’ll need to go into the
Show Options section and uncheck the “Use Legacy SQL” box. If you’re used to
using Legacy SQL, one small change you’ll need to make right away is in how
you refer to tables: rather than [isb-cgc:genome_reference.GENCODE_v22] for
example, you will instead write isb-cgc.genome_reference.GENCODE_v22 inside single-quotes.

As a concrete example of what these data look like, we created plots of
the expression data for EGFR in R
(see below for the SQL and R code).

BigQuery SQL

WITH
--
-- *GdcGene*
-- We start by extracting gene-expression data from the new NCI-GDC/hg38-based
-- table in the isb-cgc:hg38_data_previews dataset. For each row, we
-- extract simply the SamplesSubmitterID (aka the TCGA sample barcode),
-- the Ensembl gene ID (eg ENSG00000182253), and the FPKM value. The input
-- table has ~671M rows and many more fields, but we just need these 3.
GdcGene AS (
SELECT
 SamplesSubmitterID AS sampleID,
 Ensembl_gene_ID AS geneID,
 HTSeq__FPKM AS HTSeq_FPKM
FROM
 `isb-cgc.hg38_data_previews.TCGA_GeneExpressionQuantification`),
--
-- *GeneRef*
-- Next, we're going to get the gene-id to gene-symbol mapping from the GENCODE
-- reference table because the NCI-GDC table reference above contains only the gene-id
-- while the expression data we want to compare that to contains gene symbols.
GeneRef AS (
SELECT
 gene_id,
 gene_name
FROM
 `isb-cgc.genome_reference.GENCODE_v22`
WHERE
 feature='gene'),
--
-- *Hg38*
-- Now we'll join the two tables above to annotate the NCI-GDC expression data with gene-symbols,
-- and we'll call it Hg38. We're also going to create a ranking of the expression values
-- so that we can compute a Spearman correlation later on.
Hg38 AS (
SELECT
 GdcGene.sampleID,
 GdcGene.geneID,
 GeneRef.gene_name,
 GdcGene.HTSeq_FPKM,
 DENSE_RANK() OVER (PARTITION BY GdcGene.geneID ORDER BY GdcGene.HTSeq_FPKM ASC) AS rankHTSeq
FROM
 GdcGene
JOIN
 GeneRef
ON
 GdcGene.geneID = GeneRef.gene_id),
--
-- *Hg19*
-- Now, we'll get the older hg19-based TCGA gene expression data that was generated
-- by UNC using RSEM. This table has ~228M rows and we're just going to extract
-- the sample-barcode, the gene-symbol, the normalized-count, and the platform (since
-- this data ws produced on two different platforms and this might be relevant later).
-- As above, we will also create ranking of the expression values.
Hg19 AS (
SELECT
 SampleBarcode,
 HGNC_gene_symbol,
 normalized_count as RSEM_FPKM,
 DENSE_RANK() OVER (PARTITION BY HGNC_gene_symbol ORDER BY normalized_count ASC) AS rankRSEM,
 Platform
FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
WHERE
 HGNC_gene_symbol IS NOT NULL),
--
-- *JoinAndCorr*
-- Finally, we join the two tables and compute correlations
JoinAndCorr AS (
SELECT
 hg38.geneID AS gene_id,
 hg38.gene_name AS gene_name,
 CORR(LOG10(hg38.HTSeq_FPKM+1),
 LOG10(hg19.RSEM_FPKM+1)) AS gexpPearsonCorr,
 CORR(hg38.rankHTSeq,
 hg19.rankRSEM) AS gexpSpearmanCorr
FROM
 Hg19
JOIN
 Hg38
ON
 hg38.sampleID=hg19.SampleBarcode
 AND hg38.gene_name=hg19.HGNC_gene_symbol
GROUP BY
 hg38.geneID,
 hg38.gene_name)
--
-- Lastly, we make one last select
-- to get a difference between Pearson and Spearman correlations.
SELECT
 gene_id,
 gene_name,
 gexpPearsonCorr,
 gexpSpearmanCorr,
 (gexpSpearmanCorr-gexpPearsonCorr) AS deltaCorr
FROM
 JoinAndCorr
WHERE
 IS_NAN(gexpSpearmanCorr) = FALSE
ORDER BY
 gexpSpearmanCorr DESC

The results of any BigQuery query executed in the BigQuery web UI can easily be saved
to a table in case you want to perform follow-up queries on the result. For example
we might want to ask what the distribution of the correlation coefficients produced
by the preceding query look like. We can ask BigQuery to compute the deciles
on the saved results like this:

SELECT
 APPROX_QUANTILES (gexpPearsonCorr, 10) AS PearsonQ,
 APPROX_QUANTILES (gexpSpearmanCorr, 10) AS SpearmanQ,
 APPROX_QUANTILES (deltaCorr, 10) AS deltaQ
FROM
 `<<insert your results table name here>>`

The result of the above query shows that 80% of genes have a Pearson correlation >= 0.84 and a
Spearman correlation >= 0.88, and that 80% of the time the difference between
these two correlations is between -0.012 and +0.098. The median Pearson
correlation is nearly 0.93 and the median Spearman correlation is nearly 0.96.

Visualizations

[image: ../_images/correlation_btw_hg19_hg38_v3.jpg]

This plot shows the cumulative distribution of the Pearson correlation between
the hg19 RSEM expression and the hg38 HTSeq expression data. Each point
represents one gene.

[image: ../_images/egfr_hg19_vs_hg38_v2.jpg]

This plot shows the EGFR log10 expression, with the hg19 RSEM values on the x-axis and
the hg38 HTSeq values on the y-axis. Note that overall, the difference between the RSEM
and HTSeq methods may have a more significant impact on the expression values than
the change in the genome build.

[image: ../_images/egfr_hg19_vs_hg38_ranked_v2.jpg]

This plot shows the ranked EGFR expression, with the hg19 RSEM values on the x-axis
and the hg38 HTSeq values on the y-axis.

R Script

Note that the latest version of the bigrquery package supports standard SQL, so make sure you’re up to date.

library(devtools)
devtools::install_github("rstats-db/bigrquery")

library(bigrquery)
library(ggplot2)
library(stringr)

saving the above query as a string variable named 'q'

res1 <- query_exec(q, project='isb-cgc-02-abcd', useLegacySql = FALSE)

n <- dim(res1)[1]
ys <- c(0.5, 0.9, 0.95, 0.99)
ls <- sapply(1:4, function(i) sum(res1$gexpPearsonCorr < ys[i]))

qplot(x=1:n, y=sort(res1$gexpPearsonCorr)) + geom_line() +
geom_hline(yintercept = ys, col='grey', lty=2) +
geom_vline(xintercept = ls, col='grey', lty=2) +
annotate(geom="text", label=ls[1], x=ls[1], y=0) +
annotate(geom="text", label=ls[2], x=ls[2], y=0) +
annotate(geom="text", label=ls[3], x=ls[3], y=0) +
annotate(geom="text", label=ls[4], x=ls[4], y=0) +
annotate(geom="text", label="50", y=ys[1], x=0) +
annotate(geom="text", label="90", y=ys[2], x=0) +
annotate(geom="text", label="95", y=ys[3], x=0) +
annotate(geom="text", label="99", y=ys[4], x=0) +
xlab("> 20K genes sorted by correlation value") +
ylab("Pearson correlation between \nhg38.a.expFPKM and hg19.normalized_count") +
ggtitle("Pearson correlation between \nhg38.a.expFPKM and hg19.normalized_count") +
theme_bw() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
 panel.background = element_blank(), axis.line = element_line(colour = "black"))

As an exercise, you could make the above plot with Spearman's correlations.

Then let's take a look at one of our favorite genes, EGFR.

q <- "
 WITH
 --
 Hg38 AS (
 SELECT
 SamplesSubmitterID AS sampleID,
 Ensembl_gene_ID AS geneID,
 DENSE_RANK() OVER (PARTITION BY Ensembl_gene_ID ORDER BY HTSeq__FPKM ASC) AS rankHTSeq,
 HTSeq__FPKM AS HTseq_FPKM
 FROM
 `isb-cgc.hg38_data_previews.TCGA_GeneExpressionQuantification`
 WHERE
 Ensembl_gene_ID = 'ENSG00000146648'),
 --
 Hg19 AS (
 SELECT
 SampleBarcode,
 HGNC_gene_symbol,
 normalized_count as RSEM_FPKM,
 DENSE_RANK() OVER (PARTITION BY HGNC_gene_symbol ORDER BY normalized_count ASC) AS rankRSEM,
 Platform
 FROM
 `isb-cgc.tcga_201607_beta.mRNA_UNC_RSEM`
 WHERE
 HGNC_gene_symbol = 'EGFR')
 --
 -- *Join and Get Expr*
 SELECT
 hg38.geneID AS gene_id,
 hg19.HGNC_gene_symbol AS gene_name,
 LOG10(hg38.HTseq_FPKM+1) as Log10_hg38_HTSeq,
 LOG10(hg19.RSEM_FPKM+1) AS Log10_hg19_RSEM,
 rankRSEM,
 rankHTSeq
 FROM
 Hg19
 JOIN
 Hg38
 ON
 hg38.sampleID=hg19.SampleBarcode
 GROUP BY
 gene_id,
 gene_name,
 Log10_hg38_HTSeq,
 Log10_hg19_RSEM,
 rankRSEM,
 rankHTSeq"

result <- query_exec(q, project="isb-cgc-02-abcd", useLegacySql=F)

qplot(data=result, x=Log10_hg19_RSEM, y=Log10_hg38_HTSeq, main="EGFR, hg19 vs hg38, Pearson's = 0.93", xlab="Log10 RSEM hg19", ylab="Log10 HTSeq hg38")

qplot(data=result, x=rankRSEM, y=rankHTSeq, main="EGFR, hg19 vs hg38, Spearman's = 0.96", xlab="Rank RSEM hg19", ylab="Rank HTSeq hg38")

As an exercise, try plotting some other genes. Maybe genes
with both high and low correlations. What do you notice?

Let us know if you’re having trouble! We’re here to help.

Additional Resources:

	ISB-CGC examples-R [https://github.com/isb-cgc/examples-R] github repo

	ISB-CGC Analysis with R workshop material

	BigQuery web UI quickstart [https://cloud.google.com/bigquery/quickstart-web-ui]

	BigQuery 101 video [https://www.youtube.com/watch?v=kKBnFsNWwYM]

	Fun with a Petabyte: Pushing the limits of Google BigQuery video [https://www.youtube.com/watch?v=6Nv18xmJirs]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Importing a GDC File Manifest into ISB-CGC

If you’ve been using the National Cancer Institute’s Genomic Data Commons Portal [https://portal.gdc.cancer.gov/], you know that while you can identify interesting cases and files, you need to download files to your own system in order to perform unique analysis.

Since the ISB-CGC stores Google Cloud file references for the GDC data, you can do your analysis on the cloud without having to move data. This tutorial will show you how to take a downloaded file manifest from the GDC, and use ISB-CGC to find the file locations on the cloud, providing a useful analysis starting point.

Download the File Manifest from GDC

On the GDC Data Portal, first use the selection filters to create your cohort. In the example shown below, the filters of Program: TCGA, Primary Site: kidney, Vital Status: dead and Gender: female were set to produce a cohort of 84 cases with 2332 files.

To download a File Manifest, which we’ll use to find the file locations in ISB-CGC, on the Repository screen, click on the Manifest button.

[image: ../../_images/GDC-KidneyExample.png]
Import the File Manifest into Google BigQuery

Importing a GDC file manifest into its own BigQuery table will enable you to join that table with an ISB-CGC BigQuery table containing the file locations on the Google Cloud. Here’s how to do it.

If you don’t already have a Google Cloud Project, please see the following ISB-CGC documentation pages for guidance:

	How to create a Google Cloud Platform (GCP) project

	How to link ISB-CGC BigQuery tables to your Google Cloud Platform (GCP) project

One way of keeping your file manifests organized is to create a data set specifically for those tables. New data sets can be created by clicking on the Create Dataset button within your project in BigQuery.

Creating a table from a GDC file manifest is remarkably easy:

	Click on the Create Table button while you are within your new data set.

	In the resulting screen, for Create table from, select Upload. Select your manifest file and set the File format to CSV. (Tab delimited will work with this setting.)

	Have BigQuery automatically create the schema by checking the Auto detect box for Schema.

	Click on Advanced options. Select Tab for Field delimiter; enter 1 for Header rows to skip.

	Click on the Create Table button.

[image: ../../_images/BQ-CreateKidneyManifestTable.png]
Find the file locations on the Google Cloud

Now that you have a table containing the GDC file identifiers, the next step is to find the locations for the Level 1 files on the Google Cloud. To help with that task, ISB-CGC maintains BiqQuery tables that contain the GDC file identifier and the Google bucket location for the file in data set GDC_metadata. Adding the Google bucket location to our GDC information can be done via a simple SQL query:

SELECT gdc.*, isb.file_gdc_url
FROM `Your-project.GDC_Import.GDC_Kidney_File_manifest` as gdc,
 `isb-cgc.GDC_metadata.rel22_GDCfileID_to_GCSurl` as isb
WHERE gdc.id = isb.file_gdc_id

Note that you’ll need to replace “Your-project.GDC_Import.GDC_Kidney_File_manifest” with your project and the data set and table that you created above.

This query will return the results shown below and, as with any BiqQuery result, you can either export it as a file or save it as a new table in BigQuery.

[image: ../../_images/BQ-Results-KidneyManifestURLTable.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Analysis Using BigQuery, R & Bioconductor

In this tutorial, we are interested in analyzing gene expression and protein abundance differences between two types of TCGA kidney cancers, Kidney Renal Clear Cell Carcinoma (KIRC) and Kidney Renal Papillary Carcinoma (KIRP). We will build a cohort of patients with these cancer types and extract their respective gene expression and protein abundance data using Google BigQuery.

This tutorial demonstrates how to:

	Identify tables of interest using the ISB-CGC BigQuery Table Search UI

	Navigate to tables in the Google BigQuery Console directly from the ISB-CGC BigQuery Table Search

	Build and run queries in the Google BigQuery Console

	Link to R notebooks in the Google AI Platform for data interrogation and plot visualization

	Use Bioconductor packages designed for TCGA data on ISB-CGC BigQuery tables

There are no prerequisites for using the ISB-CGC BigQuery Table Search, but in order to use the ISB-CGC tables in the Google Cloud BigQuery Console
and within an R program, you’ll need to have a Google Cloud Platform project and have linked it to the ISB-CGC BigQuery tables. Please see these sections of the
ISB-CGC documentation for guidance:

	How to create a Google Cloud Platform (GCP) project

	How to link ISB-CGC BigQuery tables to your Google Cloud Platform (GCP) project

Click on the screenshots below to enlarge them.

Using the ISB-CGC BigQuery Table Search

Navigate to the ISB-CGC homepage: https://isb-cgc.org and click on the Launch icon in the BigQuery Table Search box.

[image: ../../../_images/ISB-homepage.png]
Let’s search for ISB-CGC hosted BigQuery tables that contain information for TCGA gene expression, protein expression and clinical data. We want to build a cohort of TCGA patients for which both gene expression and protein abundance data exists. Enter TCGA in the Program filter and Clinical Data, Gene Expression, and Protein Expression in the Data Type filter. To see the table schema of the clinical table, click on the (+) icon.

[image: ../../../_images/BQTableSearch-TCGA.png]
Navigate to the Google Cloud Platform (GCP) BigQuery Console by clicking on the “open” button under the table preview or on the “magnifying glass” icon on the right hand side of the Table Search row.

[image: ../../../_images/BQTableSearch-Open.png]

Using the Google Cloud BigQuery Console

On the GCP BigQuery Console we can preview the table, look at the schema, and perform queries. The image below shows the preview of the contents of the TCGA Clinical BigQuery table.

[image: ../../../_images/BQConsole-TCGA.png]
Here’s a short SQL query (that completes in 0.3 seconds) which identifies how many patients there are with TCGA kidney cancers.
Enter this SQL query in the BigQuery Console and click Run:

SELECT distinct (case_barcode)
FROM `isb-cgc.TCGA_bioclin_v0.clinical_v1`
WHERE project_short_name LIKE "TCGA-KIR%"

[image: ../../../_images/BQConsole-Barcodes.png]

Using a Google Cloud AI Platform R Notebook and Bioconductor

From here, we can use either R or Python to perform higher level analyses. In this example, we will be running an R notebook in the Google Cloud AI Platform Notebooks environment.
If you prefer, you can run this example in a local R environment instead.

To use Google Cloud AI Platform Notebooks, from the Google Cloud Platform Navigation menu (on the left), select AI Platform -> Notebooks under the Artificial Intelligence section.

[image: ../../../_images/GCP-AI-Platform.png]
Notebooks can be created in both R or Python. We’ll create our notebook in R.

[image: ../../../_images/GCP-Notebooks.png]
The Google Cloud AI platform R notebook environment looks very similar to other Jupyter notebook environments. Users can create interactive R notebooks or simpler R console notebooks.

[image: ../../../_images/GCP-R-Notebook.png]
Enter or copy each block into the R terminal. Click Run after each block to see the results.

install.packages("bigrquery")
library(bigrquery)
project <- "your project" #Replace with your project name

Query the clinical table for our cohort.
Retrieve Age at Diagnosis and Clinical Stage for Kidney Cancer data.
sql <- "Select case_barcode, age_at_diagnosis, project_short_name, clinical_stage
 from `isb-cgc.TCGA_bioclin_v0.Clinical` as clin
 where project_short_name like 'TCGA-KIR%'"

clinical_tbl <- bq_project_query (project, query = sql) #Put data in temporary BQ table
clinical_data <- bq_table_download(clinical_tbl) #Put data into a dataframe
head(clinical_data)

[image: ../../../_images/Clinical-dataframe.png]
Plot two histograms of age of diagnosis data of our cohort.
layout(matrix(1:2, 2, 1))
hist(clinical_data[clinical_data$project_short_name == "TCGA-KIRP",]$age_at_diagnosis,
 xlim=c(15,100), ylim=c(0,40), breaks=seq(15,100,2),
 col="#FFCC66", main='TCGA-KIRP', xlab='Age at diagnosis (years)')

hist(clinical_data[clinical_data$project_short_name == "TCGA-KIRC",]$age_at_diagnosis,
 xlim=c(15,100), ylim=c(0,40), breaks=seq(15,100,2),
 col="#99CCFF", main='TCGA-KIRC', xlab='Age at diagnosis (years)')

[image: ../../../_images/Clinical-histograms.png]
Create SQL query to retrieve the mean gene expression and mean protein expression per project/case.
Load it into a dataframe.
sql_expression <- "with gexp as (
 select project_short_name, case_barcode, gene_name, avg(HTSeq__FPKM) as mean_gexp
 from `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 where project_short_name like 'TCGA-KIR%' and gene_type = 'protein_coding'
 group by project_short_name, case_barcode, gene_name
), pexp as (
 select project_short_name, case_barcode, gene_name, avg(protein_expression) as mean_pexp
 from `isb-cgc.TCGA_hg38_data_v0.Protein_Expression`
 where project_short_name like 'TCGA-KIR%'
 group by project_short_name, case_barcode, gene_name
)
select gexp.project_short_name, gexp.case_barcode, gexp.gene_name, gexp.mean_gexp, pexp.mean_pexp
from gexp inner join pexp
on gexp.project_short_name = pexp.project_short_name
 and gexp.case_barcode = pexp.case_barcode
 and gexp.gene_name = pexp.gene_name"

expression_data <- bq_table_download(bq_project_query (project, query = sql_expression)) #Put data into a dataframe
head(expression_data)

[image: ../../../_images/Expression-dataframe.png]
Determine the number of cases from each project.
length(unique(expression_data$case_barcode[expression_data$project_short_name == "TCGA-KIRP"]))
length(unique(expression_data$case_barcode[expression_data$project_short_name == "TCGA-KIRC"]))

[image: ../../../_images/Num-cases.png]
#Create a dataframe that lists all the cases.
expression_data$id <- paste(expression_data$project_short_name, expression_data$case_barcode, sep='.')
cases <- unique(expression_data$id)

Transform the expression_data data frame, so that columns are samples, rows are genes.
list_exp <- lapply(cases, function(case){
 temp <- expression_data[expression_data$id == case, c('gene_name', 'mean_gexp')]
 names(temp) <- c('gene_name', case)
 return(temp)
})

gene_exps <- Reduce(function(x, y) merge(x, y, all=T, by="gene_name"), list_exp)
head(gene_exps)
dim(gene_exps)

[image: ../../../_images/gene-exp-dataframe.png]
Perform the same transform for protein abundance.
 list_abun <- lapply(cases, function(case){
 temp <- expression_data[expression_data$id == case, c('gene_name', 'mean_pexp')]
 names(temp) <- c('gene_name', case)
 return(temp)
 })
 pep_abun <- Reduce(function(x, y) merge(x, y, all=T, by="gene_name"), list_abun)
 head(pep_abun)
 dim(pep_abun)

[image: ../../../_images/pep-abun-dataframe.png]
Separate the cohorts (types of kidney cancer) into two dataframes and
generate a scatterplot of gene expression and protein abundance.
Gene expression first.
exp_p <- gene_exps[,grep('KIRP', names(gene_exps))]
exp_c <- gene_exps[,grep('KIRC', names(gene_exps))]
plot(log(rowMeans(exp_p)), log(rowMeans(exp_c)),
 xlab='log(FPKM KIRP)', ylab='log(FPKM KIRC)',
 xlim=c(-3.5,7.5), ylim=c(-3.5,7.5), pch=19, cex=2,
 col=rgb(178,34,34,max=255,alpha=150))

[image: ../../../_images/gene-scatterplot.png]
Peptide expression second.
abun_p <- pep_abun[,grep('KIRP', names(pep_abun))]
abun_c <- pep_abun[,grep('KIRC', names(pep_abun))]
plot(rowMeans(abun_p), rowMeans(abun_c),
 xlab='KIRP protein abundance', ylab="KIRC protein abundance",
 xlim=c(-0.25,0.3), ylim=c(-0.25,0.3), pch=19, cex=2,
 col=rgb(140,140,230,max=255,alpha=150))

[image: ../../../_images/peptide-scatterplot.png]
Load the Bioconductor package maftools, which has capabilities to summarize,
analyze and visualize Mutation Annotation Format (MAF) data.
install.packages("maftools")
library("maftools")

Use BigQuery to load TCGA somatic mutation data for our cancers of interest.
sql_kirc<-"SELECT Hugo_Symbol, Chromosome, Start_Position, End_Position, Reference_Allele,
Tumor_Seq_Allele2, Variant_Classification, Variant_Type, sample_barcode_tumor FROM
`isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation` WHERE project_short_name = 'TCGA-KIRC'"

sql_kirp<-"SELECT Hugo_Symbol, Chromosome, Start_Position, End_Position, Reference_Allele,
Tumor_Seq_Allele2, Variant_Classification, Variant_Type, sample_barcode_tumor FROM
`isb-cgc.TCGA_hg38_data_v0.Somatic_Mutation` WHERE project_short_name = 'TCGA-KIRP'"

maf_kirc <- bq_table_download(bq_project_query (project, query = sql_kirc)) #Put data into a dataframe
maf_kirp <- bq_table_download(bq_project_query (project, query = sql_kirp)) #Put data into a dataframe

#Rename column 9 to the field name required by maftools.
colnames(maf_kirc)[9] <- "Tumor_Sample_Barcode"
colnames(maf_kirp)[9] <- "Tumor_Sample_Barcode"

head(maf_kirc)
head(maf_kirp)

[image: ../../../_images/somatic-mutation-dataframes.png]
Convert data frames to maftools objects.
kirc <- read.maf(maf_kirc)
kirp <- read.maf(maf_kirp)
Leverage maftools plotting functionality.
plotmafSummary(maf = kirp, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, titvRaw = FALSE)
plotmafSummary(maf = kirc, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, titvRaw = FALSE)

Here is the MAF Plot Summary for Kidney Renal Papillary Carcinoma.

[image: ../../../_images/plotmafSummary-kirp.png]
oncoplot(maf = kirp, top = 10)
oncoplot(maf = kirc, top = 10)

Here is the oncoplot for Kidney Renal Papillary Carcinoma.

[image: ../../../_images/oncoplot-kirp.png]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Release Notes

The ISB-CGC has created documentation to inform researchers about major changes between the ISB-CGC Data Releases, ISB-CGC Table Search, and the ISB-CGC WebApp. For more information, please select one of the options below.

	ISB-CGC Data Release Notes

	ISB-CGC BigQuery Table Search Release Notes

	ISB-CGC Web App Release Notes

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC Data Release Notes

July 23, 2020

New TCGA controlled-access MAF tables.
New TARGET GDC release 22 RNAseq and miRNAseq tables.

BigQuery tables created

	isb-cgc-cbq:TCGA.maf_hg38_gdc_current

	isb-cgc-cbq:TCGA_versioned.maf_hg38_gdc_r14

	isb-cgc-bq:TARGET_versioned.miRNAseq_hg38_gdc_r22

	isb-cgc-bq:TARGET_versioned.RNAseq_hg38_gdc_r22

	isb-cgc-bq:TARGET.miRNAseq_hg38_gdc_current

	isb-cgc-bq:TARGET.RNAseq_hg38_gdc_current

July 21, 2020

New HCMI RNA seq table.

BigQuery tables created

	isb-cgc.HCMI.RNAseq_hg38_gdc_r23

July 15, 2020

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer was updated.

Updated totals

	Total number of cases 70,469

	Total number of unique gene fusions 32,551

	Total number of genes involved 14,014

July 9, 2020

New per sample file metadata tables added to isb-cgc-bq for GDC release 24.

BigQuery tables created

	isb-cgc-bq:BEATAML1_0.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:BEATAML1_0_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:TCGA.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:TCGA_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:TARGET.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:TARGET_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:GENIE.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:GENIE_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:CGCI.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:CGCI_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:CPTAC.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:CPTAC_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:CTSP.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:CTSP_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:FM.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:FM_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:HCMI.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:HCMI_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:MMRF.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:MMRF_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:NCICCR.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:NCICCR_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:OHSU.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:OHSU_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:ORGANOID.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:ORGANOID_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:VAREPOP.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:VAREPOP_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:WCDT.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:WCDT_versioned.per_sample_file_metadata_hg38_gdc_r24

	isb-cgc-bq:CCLE.per_sample_file_metadata_hg38_gdc_current

	isb-cgc-bq:CCLE_versioned.per_sample_file_metadata_hg38_gdc_r24

June 16, 2020

The new COSMIC release v91 data is available in BigQuery.

BigQuery tables created

	isb-cgc:COSMIC_v91_grch37.ASCAT_Purity_Ploidy

	isb-cgc:COSMIC_v91_grch37.Breakpoints

	isb-cgc:COSMIC_v91_grch37.Cancer_Gene_Census

	isb-cgc:COSMIC_v91_grch37.Complete_CNA

	isb-cgc:COSMIC_v91_grch37.Complete_Differential_Methylation

	isb-cgc:COSMIC_v91_grch37.Complete_Gene_Expression

	isb-cgc:COSMIC_v91_grch37.Complete_Targeted_Screens_Mutant

	isb-cgc:COSMIC_v91_grch37.Fusion

	isb-cgc:COSMIC_v91_grch37.Genome_Screens_Mutant

	isb-cgc:COSMIC_v91_grch37.HGNC

	isb-cgc:COSMIC_v91_grch37.Mutant

	isb-cgc:COSMIC_v91_grch37.Mutant_Census

	isb-cgc:COSMIC_v91_grch37.Mutation_Tracking

	isb-cgc:COSMIC_v91_grch37.NCV

	isb-cgc:COSMIC_v91_grch37.Resistance_Mutations

	isb-cgc:COSMIC_v91_grch37.Sample

	isb-cgc:COSMIC_v91_grch37.Structural_Variants

	isb-cgc:COSMIC_v91_grch37.Transcripts

	isb-cgc:COSMIC_v91_grch38.ASCAT_Purity_Ploidy

	isb-cgc:COSMIC_v91_grch38.Breakpoints

	isb-cgc:COSMIC_v91_grch38.Cancer_Gene_Census

	isb-cgc:COSMIC_v91_grch38.Classification

	isb-cgc:COSMIC_v91_grch38.Complete_CNA

	isb-cgc:COSMIC_v91_grch38.Complete_Differential_Methylation

	isb-cgc:COSMIC_v91_grch38.Complete_Gene_Expression

	isb-cgc:COSMIC_v91_grch38.Complete_Targeted_Screens_Mutant

	isb-cgc:COSMIC_v91_grch38.Fusion

	isb-cgc:COSMIC_v91_grch38.Genome_Screens_Mutant

	isb-cgc:COSMIC_v91_grch38.HGNC

	isb-cgc:COSMIC_v91_grch38.Mutant

	isb-cgc:COSMIC_v91_grch38.Mutant_Census

	isb-cgc:COSMIC_v91_grch38.Mutation_Tracking

	isb-cgc:COSMIC_v91_grch38.NCV

	isb-cgc:COSMIC_v91_grch38.Resistance_Mutations

	isb-cgc:COSMIC_v91_grch38.Sample

	isb-cgc:COSMIC_v91_grch38.Structural_Variants

	isb-cgc:COSMIC_v91_grch38.Transcripts

June 09, 2020

New GDC file ID to GCS url tables added to isb-cgc for GDC release 24.

BigQuery tables created

	isb-cgc:GDC_metadata.rel24_GDCfileID_to_GCSurl

May 28, 2020

New data set and RNA Sequence table derived data tables added to isb-cgc.

BigQuery tables created

	isb-cgc:TARGET.RNAseq_hg38_r22

May 27, 2020

PanCancer tables were added to the isb-cgc project. The Pan-Cancer Atlas tables include clinical, methylation, RPPA and copy number data.

BigQuery tables created

The following tables were created under the isb-cgc:pancer-altas data set:

	BarcodeMap

	clinical_PANCAN_patient_with_followup

	EBpp_AdjustPANCAN_IlluminaHiSeq_RNASeqV2_genExp

	Filtered_all_CNVR_data_by_gene

	Filtered_clinical_PANCAN_patient_with_followup

	Filtered_EBpp_AdjustPANCAN_IlluminaHiSeq_RNASeqV2_genExp

	Filtered_jhu_usc_edu_PANCAN_HumanMethylation27_betaValue_whitelisted

	Filtered_jhu_usc_edu_PANCAN_HumanMethylation450_betaValue_whitelisted

	Filtered_jhu_usc_edu_PANCAN_merged_HumanMethylation27_HumanMethylation450_betaValue_whitelisted

	Filtered_MC3_MAF_V5_one_per_tumor_sample

	Filtered_pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16

	Filtered_TCGA_RPPA_pancan_clean

	jhu_usc_edu_PANCAN_HumanMethylation27_betaValue_whitelisted

	jhu_usc_edu_PANCAN_HumanMethylation450_betaValue_whitelisted

	jhu_usc_edu_PANCAN_merged_HumanMethylation27_HumanMethylation450_betaValue_whitelisted

	merged_sample_quality_annotations

	pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16

	TCGA_CDR

	TCGA_RPPA_pancan_clean

	Whitelist_ParticipantBarcodes

GDC data release 24.0 was released on May 7, 2020.

Updates to existing programs and projects

	110 new cases were released from the HNSCC cohort of CPTAC-3. This includes WXS, WGS, RNA-Seq and miRNA-Seq data.

	Aliquot-level WXS MAFs are now available from the following projects: CPTAC-2 and CPTAC-3

BigQuery tables created

	isb-cgc:GDC_metadata.rel24_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel24_caseData

	isb-cgc:GDC_metadata.rel24_fileData_active

	isb-cgc:GDC_metadata.rel24_fileData_legacy

	isb-cgc:GDC_metadata.rel24_slide2caseIDmap

New programs and projects available in Google Cloud Storage

	New project released: CGCI-HTMCP-CC - HIV+ Tumor Molecular Characterization Project - Cervical Cancer

	RNA-Seq: Alignments and gene expression levels

	miRNA-Seq: Alignments and miRNA expression levels

	WGS: Alignments

	Targeted Sequencing: Alignments

New data sets and RNA Sequence tables derived data tables added to isb-cgc.

BigQuery tables created

	isb-cgc:BEATAML1_0.RNA_hg38_r19

	isb-cgc:ORGANOID.RNA_hg38_r18

May 8, 2020

GDC data release 23.0 was posted on April 7, 2020.

Updates to existing programs and projects

	HCMI-CMDC Aliquot-level MAFs were released

	TARGET-ALL-P2 Aliquot-level MAFs were released

	TARGET-ALL-P3 Aliquot-level MAFs were released

	TARGET-AML Aliquot-level MAFs were released

	TARGET-NBL Aliquot-level MAFs were released

	TARGET-OS Aliquot-level MAFs were released

	TARGET-WT Aliquot-level MAFs were released

	All TCGA Projects Copy number segment and estimate files from SNP6 ASCAT were released

	TARGET-ALL-P2 Copy number segment and estimate files from SNP6 ASCAT were released

	TARGET-AML Copy number segment and estimate files from SNP6 ASCAT were released

	HCMI-CMDC RNA-seq data was released

	CGCI-BLGSP clinical data was updated

	HCMI-CMDC clinical data was updated

	WCDT-MCRPC clinical data was updated

BigQuery tables created

	isb-cgc:GDC_metadata.rel23_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel23_caseData

	isb-cgc:GDC_metadata.rel23_fileData_active

	isb-cgc:GDC_metadata.rel23_fileData_legacy

	isb-cgc:GDC_metadata.rel23_slide2caseIDmap

	isb-cgc:GDC_metadata.rel23_GDCfileID_to_GCSurl

April 15, 2020

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer was updated.

Updated totals

	Total number of cases 70,236

	Total number of unique gene fusions 31,626

	Total number of genes involved 13,913

Other changes

	New Mitelman Database Logo

March 16, 2020

GDC data release 22.0 was posted on January 16, 2020.

New programs and projects available in Google Cloud Storage

	WCDT-MCRPC (Genomic Characterization of Metastatic Castration Resistant Prostate Cancer), RNA-Seq and WGS Data included

Updates to existing programs and projects

	HCMI-CMDC new RNA-Seq, WXS, WGS data was released.

	CPTAC-3 new WXS, WGS, and RNA-Seq data and miRNA-Seq data for currently released cases was released

BigQuery tables created

	isb-cgc:GDC_metadata.rel22_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel22_caseData

	isb-cgc:GDC_metadata.rel22_fileData_active

	isb-cgc:GDC_metadata.rel22_fileData_legacy

	isb-cgc:GDC_metadata.rel22_slide2caseIDmap

	isb-cgc:GDC_metadata.rel22_GDCfileID_to_GCSurl

January 11, 2020

GDC data release 21.0 was posted on December 10, 2019.

New programs and projects available in Google Cloud Storage

	GENIE-MDA

	GENIE-VICC

	GENIE-DFCI

	GENIE-MSK

	GENIE-UHN

	GENIE-JHU

	GENIE-GRCC

	GENIE-NKI

BigQuery tables created

	isb-cgc:GDC_metadata.rel21_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel21_caseData

	isb-cgc:GDC_metadata.rel21_fileData_active

	isb-cgc:GDC_metadata.rel21_fileData_legacy

	isb-cgc:GDC_metadata.rel21_slide2caseIDmap

December 20, 2019

GDC data release 19.0 was posted on September 17, 2019.

GDC data release 19.1 was posted on November 6, 2019.

New programs and projects available in Google Cloud Storage

	BEATAML1.0-COHORT (Functional Genomic Landscape of Acute Myeloid Leukemia) WXS and RNA-Seq data was included.

Updates to existing programs and projects

	TARGET-ALL-P1 new RNA-Seq data was released.

	TARGET-ALL-P2 new RNA-Seq, WXS, and miRNA-Seq data was released.

	TARGET-ALL-P3 new miRNA-Seq data was released.

	TARGET-AML new WXS and WGS data was released.

	TARGET-NBL new WXS and RNA-Seq data was released.

	TARGET-RT new WGS and RNA-Seq data was released.

	TARGET-WT new WGS, WXS, and RNA-Seq data was released.

	CGCI-BLGSP new WGS data was released.

	TARGET-ALL-P3 new Pindel VCFs was released.

	MMRF new Pindel VCFs was released.

	HCMI new Pindel VCFs was released.

	CPTAC-3 new Pindel VCFs was released.

	Disease-specific staging properties for many projects released.

BigQuery tables created

	isb-cgc:GDC_metadata.rel19_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel19_caseData

	isb-cgc:GDC_metadata.rel19_fileData_active

	isb-cgc:GDC_metadata.rel19_fileData_legacy

	isb-cgc:GDC_metadata.rel19_slide2caseIDmap

GDC data release 18 was posted on July 8, 2019.

New programs and projects available in Google Cloud Storage

	ORGANOID-PANCREATIC (Pancreas Cancer Organoid Profiling)

	MMRF-COMMPASS (Multiple Myeloma CoMMpass Study)

	CGCI-BLGSP (Burkitt Lymphoma Genome Sequencing Project)

	TARGET-ALL-P1 (Acute Lymphoblastic Leukemia - Phase I)

	TARGET-ALL-P2 (Acute Lymphoblastic Leukemia - Phase II)

Updates to existing programs and projects

	TARGET-ALL-P3 new RNA-Seq data was released.

	TARGET-CCSK new RNA-Seq data was released.

	TARGET-OS new RNA-Seq data was released.

BigQuery tables created

	isb-cgc:GDC_metadata.rel18_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel18_caseData

	isb-cgc:GDC_metadata.rel18_fileData_active

	isb-cgc:GDC_metadata.rel18_fileData_legacy

	isb-cgc:GDC_metadata.rel18_slide2caseIDmap

September 29, 2019

GDC data release 17.0 was posted on June 5, 2019.

GDC data release 17.1 was posted on June 12, 2019.

New programs and projects available in Google Cloud Storage

	HCMI-CMDC 500 files, 2.8TB

	BEATAML1.0-CRENOLANIB 700 files, 3.6TB

Updates to existing programs and projects

	CPTAC-3 RNA-Seq - 7400 files, 16.6 TB

	TCGA ATAC-Seq - 820 files, 9.2 TB

	NCICCR-DLBCL RNA-Seq - 2900 files, 11.9 TB

	CTSP-DLBCL1 RNA-Seq - 250 files, .96TB

	Updates to TCGA clinical data

	Migrations of three properties across all projects from diagnosis to demographic (vital_status, days_to_birth, days_to_death)

BigQuery tables created

	isb-cgc:GDC_metadata.rel17_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel17_caseData

	isb-cgc:GDC_metadata.rel17_fileData_active

	isb-cgc:GDC_metadata.rel17_fileData_legacy

	isb-cgc:GDC_metadata.rel17_slide2caseIDmap

April 4, 2019

GDC data release 16 was posted on March 26, 2019.

New programs and projects available in Google Cloud Storage

	CPTAC-3

BigQuery tables created

	isb-cgc:GDC_metadata.rel16_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel16_caseData

	isb-cgc:GDC_metadata.rel16_fileData_active

	isb-cgc:GDC_metadata.rel16_fileData_legacy

	isb-cgc:GDC_metadata.rel16_slide2caseIDmap

March 6, 2019

GDC data release 15 was posted on February 20, 2019.

New programs and projects available in Google Cloud Storage

	TARGET-ALL-P3

BigQuery tables created

	isb-cgc:GDC_metadata.rel15_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel15_caseData

	isb-cgc:GDC_metadata.rel15_fileData_current

	isb-cgc:GDC_metadata.rel15_fileData_legacy

	isb-cgc:GDC_metadata.rel15_slide2caseIDmap

January 4, 2019

GDC data release 14 was posted on December 18, 2018.

New programs and projects available in Google Cloud Storage

	FM-AD

BigQuery tables created

	isb-cgc:GDC_metadata.rel14_aliquot2caseIDmap

	isb-cgc:GDC_metadata.rel14_caseData

	isb-cgc:GDC_metadata.rel14_fileData_current

	isb-cgc:GDC_metadata.rel14_fileData_legacy

	isb-cgc:GDC_metadata.rel14_GDCfileID_to_GCSurl

	isb-cgc:GDC_metadata.rel14_GDCfileID_to_GCSurl_NEW

	isb-cgc:GDC_metadata.rel14_slide2caseIDmap

	isb-cgc:TCGA_hg38_data_v0.miRNAseq_Expression

	isb-cgc:TCGA_hg38_data_v0.miRNAseq_Isoform_Expression

October 2, 2018

GDC data release 13 was posted on September 27, 2018.

New programs and projects available in Google Cloud Storage

	VAREPOP-APOLLO

	CTSP-DLBCL1

	NCICCR-DLBCL

DR13, active archive contains 428,543 files (DR12 contained 356,381 files)

	116 files were removed: 88 VCF files, 24 BAM files, and 2 miRNA “mirnas.quantification” files and (corresponding) 2 miRNA “isoforms.quantification” files.

	72278 files were added: 47248 BAI files, 23203 TBI files, 1287 BAM files, 504 SEG files, 36 SVS files.

June 25, 2018:

GDC data release 12 was posted on Wednesday, June 13, 2018.

	There is absolutely no change in the legacy archive data between DR11 and DR12

	There is also no change in the total number of cases in either archive

	The number of files in the current archive has increased from 329,165 to 356,381:

	67,220 files were removed

	94,436 files were added

More details about the changes to the current archive of TCGA data:

Copy Number Variation | Genotyping Array | TXT files:

	22376 Copy Number Segment files replaced (ie removed and added)

	22376 Masked Copy Number Segment files replaced

Biospecimen | BCR XML files:

	11294 files replaced

Clinical | BCR XML files:

	11160 files removed / 11167 files added (ie 7 extra files)

Biospecimen | Diagnostic Slide | SVS files:

	11730 Slide Image files added

Biospecimen | BCR SSF XML files:

	10557 Biospecimen Supplement files added

Biospecimen | BCR Auxiliary XML files:

	2884 Biospecimen Supplement files added

Clinical | BCR OMF XML files:

	1051 Clinical Supplement files added

Biospecimen | BCR Biotab files:

	340 Biospecimen Supplement files added

Clinical | BCR Biotab files:

	226 Clinical Supplement files added

Simple Nucleotide Variation | WXS | VCF | Varscan2 files :

	1 Raw Simple Somatic Mutation file removed (2017-03-04)

	1 Annotated Somatic Mutation file removed (2017-06-17)

Both for ESCA samples:

TCGA-VR-A8ET-01A-11D-A403-09;TCGA-VR-A8ET-10B-01D-A403-09

For TARGET data:

RNA-Seq data:

	3 BAM files and 9 Gene Expression Quantification files removed

	Sample barcodes: TARGET-30-PAKYZS-01A-01R, TARGET-30-PAMEZH-01A-01R, TARGET-30-PANRRW-01A-01R

	Raw CGI Variant | WGS | Combined Nucleotide Variation | VCF files:435 files added

June 4, 2018:

The metadata tables for GDC data release 11 are now available in BigQuery.

May 8, 2018:

The gnomAD database (release 2.0.2, dated October 2017) is now available in BigQuery! isb-cgc:genome_reference.gnomAD_20171003_GRCh37.

April 30, 2018:

Recently released (2018-04-01) ClinVar VCFs are now available in BigQuery! Two new tables (ClinVar_20180401_GRCh37 and ClinVar_20180401_GRCh38) can be found in our genome_reference dataset; also available is dbSNP build 151 (announced 2018-04-24): isb-cgc:genome_reference.dbSNP_b151_GRCh37p13_All.

February 22, 2018:

A genenames_mapping [https://bigquery.cloud.google.com/table/isb-cgc:genome_reference.genenames_mapping?pli=1&tab=schema] table has been added to our numerous reference sources in BigQuery to simplify mapping between HGNC IDs, HGNC symbols, Entrez Gene IDs, Ensembl Gene IDs, Pubmed IDs, and RefSeq IDs!

June 9, 2018:

The metadata tables for GDC data release 10 are now available in BigQuery.

May 8, 2018:

The release 85 of the COSMIC database is now available in BigQuery.

February 13, 2018:

The release 84 of the COSMIC database is now available in BigQuery.

December 19, 2017:

The ISB-CGC cohort metadata has been update to reflect the new and update TARGET gene expression data provided by the GDC in their data release 9.

December 6, 2017:

The GDC release 9 included some updated and new TARGET gene expression data. The BigQuery table isb-cgc:TARGET_hg38_data_v0.RNAseq_Gene_Expression has been updated to reflect this.

November 7, 2017:

The release 83 of the COSMIC database is now available in BigQuery.

November 3, 2017:

The metadata tables for GDC data release 9 are now available in BigQuery.

October 30, 2017:

The ‘harmonized’ hg38 TCGA VCF files (raw and annotated) are now available in the ISB-CGC controlled-data repository in Google Cloud Storage.

August 30, 2017:

The hg38 TARGET VCF files (raw and annotated) are now available in the ISB-CGC controlled-data repository in Google Cloud Storage.

August 3, 2017:

Release 82 of the COSMIC database is now available in BigQuery.

June 30, 2017:

The genome sequence hg19 and hg38 TARGET WXS, RNA-Seq, and miRNA-Seq BAM files are now available in the ISB-CGC controlled-data repository in Google Cloud Storage.

May 9, 2017:

Release 81 of the COSMIC database is now available in BigQuery.

May 5, 2017:

A table mapping between UniProtKB accessions and identifiers has been added to our reference dataset: isb-cgc:genome_reference.UniProtKB_idmapping.

April 10, 2017:

We have re-organized our TCGA clinical, biospecimen, and molecular data into new datasets in BigQuery.

Please find them below:

	isb-cgc:TCGA_bioclin_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_bioclin_v0?pli=1]

	isb-cgc:TCGA_hg19_data_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_hg19_data_v0?pli=1]

	isb-cgc:TCGA_hg38_data_v0 [https://bigquery.cloud.google.com/dataset/isb-cgc:TCGA_hg38_data_v0?pli=1]

The hg19 data can also be found in the GDC’s legacy archive [https://portal.gdc.cancer.gov/legacy-archive/search/f], while the hg38 data is available at the GDC data portal [https://portal.gdc.cancer.gov/].

March 30, 2017:

The ‘harmonized’ hg38 TCGA miRNA-Seq BAM files from the initial GDC data release are now available in the ISB-CGC controlled-data repository in Google Cloud Storage.

February 20, 2017:

In collaboration with the Sanger Institute, the COSMIC database [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/data/COSMIC_about.html] is now available in BigQuery (registered users only).

February 5, 2017:

Genomic coordinates (in GFF3 format) for human microRNAs added for miRBase v20 and v21 to the isb-cgc:genome_reference BigQuery dataset.

January 30, 2017:

The final, unified “MC3” TCGA somatic mutations call set is available in the BigQuery.
isb-cgc:hg19_data_previews dataset (also available on Synapse [https://www.synapse.org/#!Synapse:syn7214402/wiki/405297]).

January 10, 2017:

miRBase_v20 table added to the isb-cgc:genome_reference BigQuery dataset.

January 4, 2017:

Ensembl gene-set releases 75 (GRCh37) and 87 (GRCh38) are now also available in the isb-cgc:genome_reference BigQuery dataset.

December 30, 2016:

The ‘harmonized’ hg38 TCGA WXS BAM files and RNA-Seq BAM files from the initial GDC data release (1.0), as well as the legacy hg19. TCGA ‘Level 2’ Genome-Wide SNP6 array genotype files (‘birdseed’) files are now available in the ISB-CGC controlled-data repository in Google Cloud Storage.

November 14, 2016:

TCGA radiology and tissue slide images are now available in Google Cloud Storage!
This includes radiology images (DICOM files) from the Cancer Imaging Archive [http://www.cancerimagingarchive.net/] (TCIA) and tissue slide images from the NCI-GDC data portal [https://portal.gdc.cancer.gov/legacy-archive/search/f?filters=%7B%22op%22:%22and%22,%22content%22:%5B%7B%22op%22:%22in%22,%22content%22:%7B%22field%22:%22files.data_type%22,%22value%22:%5B%22Tissue%20slide%20image%22%5D%7D%7D%5D%7D] (SVS files).

November 16, 2016:

TCGA proteomics data from the CPTAC [https://cptac-data-portal.georgetown.edu/cptacPublic/] (Phase II) is now available in Google Cloud Storage [https://console.cloud.google.com/storage/browser/isb-cptac-open/Phase_II].

September 10, 2016:

GENCODE versions 19, 22, 23, and 24 are all now available in the isb-cgc:genome_reference BigQuery dataset, with an updated and more complete schema. – Note also that the naming convention is now GENCODE_v19 rather than GENCODE_r19; also that v19 is the last version based on hg19/GRCh37, and all subsequent versions are based on hg38/GRCh38.

August 31, 2016:

A table based on the latest liftOver hg19-to-hg38 chain files is available in the isb-cgc:tcga_genome_reference BigQuery dataset.

August 26, 2016:

A set of tables based on running Picard over ~67,000 TCGA bam files in GCS have been added to the isb-cgc:tcga_seq_metadata BigQuery dataset: information contained in these tables includes bam-index stats, insert-size metrics, quality-distribution metrics, and quality-yield metrics – these tables can be used in conjunction with the FastQC-based tables to look for bam and/or fastq data files that meet your analysis criteria.

August 21, 2016:

New miRBase_v21 table added to the isb-cgc:genome_reference BigQuery dataset.

August 20, 2016:

Updated hg19 and hg38 Kaviar [http://db.systemsbiology.net/kaviar/] tables added to the isb-cgc:genome_reference BigQuery dataset.

August 17, 2016:

New isb-cgc:GDC_metadata BigQuery dataset containing metadata for both legacy and current files hosted at the NCI-GDC [https://gdc.cancer.gov/].

July 28, 2016:

New isb-cgc:tcga_201607_beta BigQuery dataset based on the final TCGA data upload from the DCC. This dataset largely mirrors the previous isb-cgc:tcga_20510_alpha dataset and is now also supporting the ISB-CGC Web-App. The curated TCGA cohort tables in the isb-cgc:tcga_cohorts BigQuery dataset have also been updated.

June 24, 2016:

An updated listing of all ISB-CGC hosted data in Google Cloud Storage (GCS) is now available in the GCS_listing_24jun2016 table in the isb-cgc:tcga_seq_metadata dataset in BigQuery, in addition the CGHub_Manifest_24jun2016 table contains the final CGHub Manifest prior to the transition of all data to the Genomic Data Commons [https://portal.gdc.cancer.gov/].

June 18, 2016:

New GENCODE_r24 table added to the isb-cgc:genome_reference BigQuery dataset.

May 13, 2016:

New NCBI_Viral_Annotations_Taxid10239 table added to the isb-cgc:genome_reference BigQuery dataset.

May 9, 2016:

New Ensembl2Reactome and miRBase2Reactome tables added to the isb-cgc:genome_reference BigQuery dataset.

May 3, 2016:

New isb-cgc:tcga_seq_metadata BigQuery dataset contains metadata and FastQC metrics for thousands of TCGA DNA-seq and RNA-seq data files:
- CGHub_Manifest table contains metadata for all TCGA files at CGHub as of April 27th, 2016
- GCS_listing_27apr2016 table contains metadata for all TCGA files hosted by ISB-CGC in GCS
- RNAseq_FastQC table contains metrics derived from FastQC runs on the RNAseq data files, including urls to the FastQC html reports that you can cut and paste directly into your browser
- WXS_FastQC table contains metrics derived from FastQC runs on the exome DNAseq data files

April 28, 2016

GO_Ontology and GO_Annotations tables added to the isb-cgc:genome_reference BigQuery dataset.

March 14, 2016

With the release of our Web-App, controlled-data is now accessible (programmatically) to users who have previously obtained dbGaP approval for TCGA data and go through the NIH authentication process built-in to the Web-App.

February 26, 2016

New CCLE dataset in BigQuery isb-cgc:ccle_201602_alpha includes sample metadata, mutation calls, copy-number segments, and expression data (metadata includes full cloud-storage-path for world-readable BAM and SNP CEL files, and Genomics dataset- and readgroupset-ids for sequence data imported into Google Genomics).

February 22, 2016

Kaviar database now available in the isb-cgc:genome_reference BigQuery dataset.

February 19, 2016

CCLE RNAseq and DNAseq bam files imported into Google Genomics.

January 10, 2016

GENCODE_r19 and miRBase_v20 tables added to the isb-cgc:genome_reference BigQuery dataset.

December 26, 2015

Public release of new isb-cgc:genome_reference BigQuery dataset: the first table is based on the just-published miRTarBase release 6.1.

December, 12, 2015

Curated TCGA cohort lists available in isb-cgc:tcga_cohorts BigQuery dataset.

December 3, 2015

Version v0.1 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/1.0].

First tagged release of the web-app.

November 16, 2015

Initial upload of data from CGHub into Google Cloud Storage (GCS) complete (not publicly released).

November 2, 2015

First public release of TCGA open-access data in BigQuery tables.

	isb-cgc:tcga_201510_alpha dataset contains updated set of BigQuery tables, based on data available at the TCGA DCC as of October 2015

	Includes Annotations table with information about redacted samples, etc

	isb-cgc:platform_reference contains annotation information for the Illumina DNA Methylation platform

October 4, 2015

Complete data upload from TCGA DCC, including controlled-access data

September 21, 2015

Draft set of BigQuery tables (not publicly released)

	isb-cgc:tcga_201507_alpha dataset containing clinical, biospecimen, somatic mutation calls and Level-3 TCGA data available at the TCGA DCC as of July 2015

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC BigQuery Table Search Release Notes

To learn about this discovery tool created by the ISB-CGC, please visit ISB-CGC BigQuery Table Search [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/BigQueryTableSearchUI.html].

For more detailed information about the data stored in ISB-CGC BigQuery tables please visit ISB-CGC BigQuery Tables [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/BigQuery.html].

July 23, 2020 v1.03 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.24]

New Features

	The Access filter has been added, which has options of All, Open Access and Controlled Access. Controlled Access data cannot be previewed, but can be opened in the Google BigQuery Console, if the user has the required permissions.

March 11, 2020 v1.02 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.23]

New Features

	Users now have the ability to access, query and inspect in detail BigQuery tables in Google Cloud Platform’s BigQuery console directly from the Table Search UI. Every table has a “Open” option which when clicked will send the user to the table in the BigQuery console on the Google Cloud.

	An Open button, with the same functionality as described above, has been added to the Schema Description section.

	Program and Experimental Strategy filters were added.

	Values for the Data Type and Source filters have been modified in order to align more closely with GDC naming conventions.

January 30,2020 v1.01 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.22]

New Features

	A “Name” column consisting of user-friendly descriptive names for the BigQuery tables has been introduced.

	The Name filter, a free-form text search field is now available allowing users to search for all or a portion of the user-friendly descriptive names.

	Columns can be now added or removed from the display by using the Columns selector option.

	By default, Dataset ID and Table ID are no longer initially displayed in the full column view, but can be added to the display using the columns selector.

	The Full ID, which is denoted [projectID.datasetID.TableID] (concatenation of the project ID, dataset ID and the Table ID, each separated by a period symbol) is listed under the detailed table information section found after clicking on the blue plus sign.

	A Copy button, found adjacent to the Full ID has been added. The Full ID adheres to BigQuery Standard SQL format and contains the necessary grave accents (`) required for executing SQL queries in BigQuery. When copied to the clipboard, the Full ID can be directly used to run queries in BigQuery Query Editor without any further manual modifications.

Enhancements

	Individual table schemas captured by the “Fields” column in the CSV download now contain field information in comma-separated format.

November 26, 2019 v1.0 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.21]

Initial Release

The ISB-CGC BigQuery Table Search UI is a discovery tool that allows users to explore and search for ISB-CGC hosted BigQuery tables. It can be accessed directly from the ISB-CGC homepage.

Major features in the initial release include:

	The ability to search for BiqQuery tables by multiple filters:

	Status

	Categories

	Reference Genome Build

	Source

	Data Type

	Dataset ID

	Table ID

	Table Description

	Labels

	Field Name

	Display of search results in a tabular format, with the following information about BiqQuery tables:

	Dataset ID

	Table ID

	Status

	Source

	Data Type

	Num Rows

	Created Date

	Detailed schema information for each table, including full table ID, table description, and field descriptions.

	The ability to preview the first eight rows in the BigQuery table of choice.

	The ability to download a CSV format file of search results.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC Web App Release Notes

August 19, 2020

New Features

	ISB-CGC has a new home page, which prominently features ISB-CGC Data Browsers and Resources.

	A Cancer Data File Browser is now available directly from the ISB-CGC home page. It is similar to the existing File Browser within the Web App, except:

	Sign in is not needed.

	It is not dependent on cohorts built through the Web App.

	Output can be downloaded to CSV. To download to Google Storage Buckets or Google BigQuery tables, the user must sign in.

	Program filter has been added.

	The ISB-CGC home page includes a Programmatic API section. The Launch functionality includes links to:

	ISB-CGC API;

	Tutorials for Workflow on Google Cloud;

	Comparison of Workflow Languages.

	All NA filters have been renamed to None in both the File Browser page and the Cohort Builder page.

	User details page has been modified to include more icons and buttons. The essential functionality and contents are not modified.

Known Issues

	Work is underway to rework our cohort creation page to better display images associated with samples.

	The user data upload feature will return an error message stating, “Error submitting response : Could not connect to data upload server.”

	Analysis Type: Seq peek Formatting is Elongated on occasion.

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

July 23, 2020

New Features

	To increase system speed when filtering cohorts, switched metadata counting to use Apache Solr (instead of MySQL).

	The WebApp is now performing its data retrieval and counts on ISB-CGC Google BigQuery tables which are based on the latest GDC data release. This means that you will see current data, but that the same queries in the WebApp could produce different results if they were run during different time periods, when the WebApp was based on different GDC data releases.

	On the Create Cohorts – Filters page, on the left-hand filter panel, display the number of cases available for each filter, instead of the number of samples.

	Within the Cohort Details page, on the Current Filters panel, when there are more filters than what fits on the initial screen, display the selected cohort filters in a gradient (fade-away) overlay instead of a clipped design.

	The video tutorials have been moved to the ISB-CGC YouTube channel.

Bug Fixes

	Clicking on the X on an existing cohort filter token in the Selected Filter panel did not delete the existing cohort filter token. (This issue was caused by a jQuery update.) It has now been fixed.

	When a user tried to register for controlled access for 12 or more programs, this caused an error from Data Commons Framework (DCF) to occur. This was fixed by limiting the number of controlled access programs that a user could register for at one time to six.

Known Issues

	The Program filter is listing ‘NA’ as an option.

	Work is underway to rework our cohort creation page to better display images associated with samples.

	The user data upload feature will return an error message stating, “Error submitting response : Could not connect to data upload server.”

	Analysis Type: Seq peek Formatting is Elongated on occasion.

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

May 27, 2020

New Features

	Modify the opt-in (subscription) form to have an “Ask me later” option.

	Provide a link (https://isb-cgc.appspot.com/opt_in/form_reg_user/) to the opt-in page. The link will first prompt the user to login with their google ID (if they are not already logged in). After the login, the feedback page will open.

Bug Fixes

	When writing and saving a comment in the cohort details or worksheet sections, the system displayed underlying code (such as escape characters) along with the text entered in the Comments panel. This has been corrected.

	Some data results were not displaying when working with OncoGrid due to it being unable to handle the amount of data being processed. This has been fixed.

	All plotting components under the Plot settings should be disabled when user views a shared workbook; however, ‘Plot by’ and ‘Plot as Log’ were not. This has been fixed.

	On analysis plots for workbooks, sometimes the y-axis tick marks would overlap the y-axis label when using the zoom out feature. This has been fixed.

	On the Create Cohorts - Filters page, when using the program TARGET with the filter Days to Birth, the Total Number of Cases and Total Number of Samples were not displaying. Also, the Save As New Cohort button was disabled. This has been corrected.

Known Issues

	Work is underway to rework our cohort creation page to better display images associated with samples.

	The user data upload feature will return an error message stating, “Error submitting response : Could not connect to data upload server.”

	Analysis Type: Seq peek Formatting is Elongated on occasion.

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

April 16, 2020

New Features

	The Cohort Creation by Filter builder is now accessible without having to log in to ISB-CGC.

	The Cohort, Workbooks, and Gene and Variable Favorites lists are now paginated to display 10 to 15 records at a time.

	The ‘To complete this analysis’ section on the workbook creation page has changed from a checklist to an interactive tool. After each step is completed, its icon changes from an orange arrow to a green checkmark.

	A link ‘Learn more about our available Analyses’ was added next to the Analysis Type selection field. Clicking on this link opens up a screen with a detailed explanation of all the analysis options.

Bug Fixes

	On the File Browser, the search by CASE filter on the Radiology Images tab has been fixed.

	‘How to Cite Us’ text on the Home page has been updated to reflect the entire ISB-CGC platform.

	When using a workbook, if you completely zoomed out of a plot, the chart was being reduced to half of the screen. This has been corrected.

Known Issues

	Work is underway to rework our cohort creation page to better display images associated with samples.

	The workbook zoom-out feature will cause text overlap in the y-axis panel of analysis.

	The user data upload feature will return an error message stating, “Error submitting response : Could not connect to data upload server.”

	Analysis Type: Seq peek Formatting is Elongated on occasion.

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

March 11, 2020

New Features

	An Opt-in page was created for the user to sign up for ISB-CGC announcements.

Bug Fixes

	When working with the ISB-CGC API DELETE/cohorts/{cohort_id}, only able to delete cohorts owned by authenticated user.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion.

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

January 30, 2020

The following datasets (open and controlled access) have been added to the ISB-CGC for service account registration:

	Genomics Evidence Neoplasia Information Exchange (GENIE)

	The Pancreas Cancer Organoid Profiling (ORGANOID)

	The Multiple Myeloma CoMMpass Study (MMRF)

	Burkitt Lymphoma Genome Sequencing Project (CGCI)

	Acute Lymphoblastic Leukemia - Phase I (TARGET-ALL-P1)

	Acute Lymphoblastic Leukemia - Phase II (TARGET-ALL-P2)

	Functional Genomic Landscape of Acute Myeloid Leukemia (BEATAML1.0-COHORT)

New Features

	The File Browser is enabled to define cancer names under the Disease Code filter in the left panel.

Bug Fixes

	The Cohorts share button is now enabled from the cohorts list page.

	The Cohort builder - filters, when using Pathologic Stage filter, the filters display in the correct format.

	Add a gene & miRNA variable favorite list from menu bar selection is now enabled.

November 26, 2019 v1.21 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.21]

New Features

APIs

	Endpoint GET/data/available/registration lists all possible open and controlled programs available for registration with a service account.

	Endpoint GET/data/available/cohorts list all possible programs and projects available to use to make a cohort of the data available.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion.

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

August 27, 2019 v1.20 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.20]

The following datasets (open and controlled access) have been added to the ISB-CGC for service account registration:

	The Human Cancer Models Initiative (HCMI)

	The Functional Genomic Landscape of Acute Myeloid Leukemia (BEATAML1.0)

New Features

	Mitelman Database mirror released on the ISB-CGC.

Please go to Mitelman Database Chromosome Aberrations and Gene Fusions in Cancer [https://mitelmandatabase.isb-cgc.org/].

All search databases available listed below.

	Cases Cytogenetics Searcher

	Gene Fusions Searcher

	Clinical Associations Searcher

	Recurrent Chromosome Aberrations Searcher

	References Searcher

	ISB-CGC APIs have been updated to a Swagger user interface as well as Google Endpoints OpenAPI, now known as APIsv4.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

July 18, 2019 v3.19 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.19]

The following datasets (open and controlled access) have been added to the ISB-CGC for service account registration:

	The Clinical Proteomic Tumor Analysis Consortium (CPTAC)

New Features

Workbooks

	Edit plot settings feature provides the ability to plot by either cases or samples barcode count for a bar chart, histogram, scatter plot, violin plot, and cubby hole plot analyses.

	Detailed information provided by dbGaP for every program available when registering a Google service account.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

April 25, 2019 v3.18 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.18]

The following datasets (open and controlled access) have been added to the ISB-CGC for service account registration:

	The National Cancer Institute Center for Cancer Research (NCICCR)

	Foundation Medicine (FM)

	Clinical Trial Sequencing Project (CTSP)

	Veterans Research for Precision Oncology Program (VAREPOP)

	Acute Lymphoblastic Leukemia - Phase III (TARGET-ALL-P3)

Enhancements

	When working with Oncogrid, OncoPrint, or a SeqPeek plot on a workbook, you will receive an automated list of genes ready for analysis.

	When on an additional workbook, text has been added to guide the user to select edit plot settings to choose a gene/miRNA/variable filter and cohort to used in the selected analysis.

	The Workbook comments section has been reformatted to better align with analysis displayed.

	On the cohort creation - filter page, the filters have been updated in the left filter panel to specify the count type displayed (samples).

Bug Fixes

	Clicking on a legend entry to toggle the display of the data points on a scatter or violin plot will now work correctly, even if the legend text has a space.

	Plotting with sample type filter on a workbook will now display counts correctly.

	When working with the color by feature on either a Scatter plot or a Violin plot, the numerical values are now displayed as a color-gradient legend.

	When using a workbook with OncoGrid analysis you are now able to plot using genomic build hg19.

	When using a workbook with a Cubby Hole plot analysis text is no longer cut off when using sample type or residual tumor as a filter.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

March 8, 2019 v3.17 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.17]

Enhancements

	When working with a workbook many overall enhancements of user functionality have been improved.

	Cubby hole plot analysis has been reformatted to better suit the end user by now allowing resizing and scrolling through the cubby hole plot analysis.

	You are now able to work on a workbook via fullscreen for added comfort.

	You are also now able to download plot data for Bar charts, Histogram charts, Scatter plots, Violin plot charts, and Cubby hole plots as a CSV file.

	OncoGrid [https://github.com/oncojs/oncogrid] has been added as an analysis option when working with a workbook.

	On the File Browser section you are now able to use full screen on all image viewers.

	On the register/adjust a service account page, we’ve clarified the notification message if a key or role is found associated to a service account.

Bug Fixes

	When using a workbook you will no longer see text overlap when working on a violin/scatter plot with the color by feature sample type as filter option.

	When working on the Pathology images viewer you will no longer see text overlap on the top right hand side of viewer.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

January 22, 2019 v3.16 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.16]

Enhancements

	On the Gene list creation page, you can now upload line separated and tab separated gene lists to be used for analysis.

	We have made some updates to the workbooks plotting section.

	You are now able to redraw to the original plot after any changes.

	Plots are now able to be saved as a .SVG, .PNG, or .JSON file.

Bug Fixes

	On the cohort creation using the barcode upload feature, the table page list feature now is now displayed properly.

	If you have not linked to the Data Commons Framework at all you are able to unregister a Google Cloud Project. If you are not linked to the Data Commons Framework, but others in the Google Cloud project are, only they will be able to unregister the GCP.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

December 5, 2018 v3.15 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.15]

Enhancements

	The ISB-CGC homepage has been updated to provide Funding and Partnership information, and the About Us section is now hidden by default.

	An introduction video has been added to the videos tutorials section. This video covers the user interface, BigQuery and using the API endpoints.

	Funding information has been updated on the ISB-CGC homepage.

	On the Register/Adjust a service account page all spacing issues have been addressed.

	On the Register/Adjust a service account pages you are now returned more detailed information. You will be returned verification results for all users on the Google Cloud Project, datasets permissions verification, registered service account verification results, and all service accounts verification results.

	On the File Browser page, when working with on a cohort with CCLE data included for genomic build hg38 you are displayed a notification message for CSV export button.

	On the File Browser a new column has been added for File Size for all tabs.

	When exporting a large cohort on the File Browser page you are returned a notification message stating cohort export is underway to check BigQuery in a few minutes.

	On the File Browser you are now able to view/download/print Pathology Reports in pdf format.

	On the Pathology Images viewer, the GDC has released multiple versions of slide barcodes. To handle this we now sort the pathology image files by UUID.

	On the the File Browser for Radiology Images, ISB-CGC has upgraded the viewer to run OHIF for better performance times and views.

Bug Fixes

	When working on the File Browser export to BigQuery/Google Cloud Storage entering an invalid name will disable the export feature, even after toggling between datasets.

	When on a Workbook, using an OncoPrint analysis using certain genes with no gene positions will return correct error message stating no internal feature ID was found.

	Certain gene names which symbol ‘_’ included will now return data points when working with a Workbook.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to the Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcode error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated with them.

	Sharing a workbook with someone else will cause the analysis to reset.

	Work is underway to rework our cohort creation page to better display images associated with samples.

September 20, 2018 v3.14 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.14]

Enhancements

	When on the File browser page, the case barcode column is included when downloading the file manifest CSV format option.

	You will now need to log into the Data Commons Framework to be able to access controlled data.

Bug Fixes

	API endpoint cohort.creation will no longer include NULL values in sample counts when cohort is created.

	On the File Browser tab using filter option NA will now return all entries associated to it.

	Program TCGA and TARGET have new miRNA based on the GDC release 11 is now available in Google BigQuery and for plotting.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcodes error message and unable to upload all the barcodes.

	On the File Browser page for Diagnostic images there is no GDC file UUID associated to them.

	Sharing a workbook with someone else will cause the analysis to reset.

	When using a workbook, a gene with symbol “_” will produce a error message saying, “There was an error retrieving plot data. Please try again.”

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

July 31, 2018 v3.13 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.13]

Enhancements

	When working on the File Browser you now have the ability to search by case barcode all on tabs(Pathology Images, Radiology Images, IGV Browser, All Files).

	On the File Browser page for the Pathology Images tab, you can now also filter by Disease Code, Data Format, and Data Type. For the Radiology Images, a disease code was added.

	On the File Browser page, you now have the ability to hide the filters and expand the file list to full width.

	On the File Browser page, if you download the file manifest using the export CSV feature, you will see newly updated file paths. The older paths are still in existence but will be deleted within the next month.

	On the File Browser page if you use a cohort with CCLE data present, switch to build hg38 and attempt to export you will return a notification no CCLE data will be present for build hg38.

	On the homepage, we have added a carousel scrolling feature for all how-to videos for easy access.

	A description has been added to all video tutorials.

	The menu bar text variable favorites have been updated to be undifferentiated.

Bug Fixes

	When creating a cohort using the filter selection option, if the filter options selected add up to zero the save cohort button will be disabled.

	A workbook with user upload data and public data e.g TCGA data will plot any analyses.

	For the export to GCS and BigQuery feature the export button will now disable when an invalid name is given.

	On a registered Google Cloud Project detail page, datasets can no longer be duplicated within a project, and bucket names are globally unique (across all projects).

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcodes error message and unable to upload all the barcodes.

	API endpoint cohort.creation will include NULL values in sample counts when the cohort is created.

	On the File Browser page for Diagnostic images, there is no GDC file UUID associated to them.

	Sharing a workbook with someone else will cause the analysis to reset.

	When downloading the CSV file for Radiology Images tab on the File Browser page you will noticed there are no samples barcodes associated to Radiology Images. ISB-CGC will add a case barocde to the CSV file export table in the next release.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

June 18, 2018 v3.12 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.12]

Enhancements

	The ISB-CGC has enabled OncoPrint visualization tool for germline mutations (codebase obtained with permission from cBioPortal) as another Workbook analysis tool. For more information please go here. [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Workbooks.html#creating-and-saving-a-workbook]

	You are now able to view Radiology Images from TCIA data through the File Browser using the Osimis viewer. For more information please go here here. [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/OsimisWebViewer.html]

	Two new videos have been added to our video tutorials section. You can now learn how to sign up with a Google account and how to make a gene list easily. For more information please go here. here [https://isb-cgc.appspot.com/videotutorials/]

	The Dashboard has been upgraded to include a collapse feature for all panels (workbooks and cohorts are opened by default) and a direct link to the File Browser has been added to the Cohorts panel.

	Under cohort creation by filters, the Molecular tab for TCGA data has been upgraded to combine multiple gene mutation filters. Filters can be combined using AND (requires all filters to be met for the data to be filtered) or OR (at least one criteria needs to be met for the data to be displayed).

	The CSV download, Export to BigQuery, and Export to GCS feature has been added to the IGV Browser, Pathology Images, and the Radiology Images tab on the File Browser.

	On the File Browser All files tab the clinical filter now displays the accurate count available for analysis.

	The File Browser has been upgraded to now include the option of which columns to display and the ability to jump to any page.

	The site menu has been improved to allow faster load times and better overall performance. Please Note that Workbooks must now be created from a data source (Cohorts, Variable lists, Gene & miRNA lists) or from the Workbook list page.

Bug Fixes

	When working on Firefox browser a violin plot will display the data plotted correctly when working on a Worksheet.

	A cohort with user uploaded data present and public data present in our system e.g TCGA data, the cohort details page for the selected filters panel will sort the filters by their appropriate program.

	On the cohort creation - barcode upload page the ‘Samples’ and ‘Cases’ column headers were sometimes swapped. This has been corrected.

	When trying to reload a stored Seq-Peek plot from a Workbook the previous gene selection is stored and the plot will automatically be loaded.

	On the File Browser IGV Browser tab when switching genomic builds the view column selection option will be disabled.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcodes error message and unable to upload all the barcodes.

	API endpoint cohort.creation will include NULL values in sample counts when cohort is created.

	Duplicate entries can be entered for the register a dataset and the register a bucket on the Google cloud project details page.

	On the File Browser page for Diagnostic images there is no GDC file UUID associated to them.

	Sharing a workbook with someone else will cause the analysis to reset.

	A Workbook using a cohort that has user uploaded data and public TCGA data present will not return data for any analysis.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

May 3, 2018 v3.11 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.11]

Enhancements

	The export to BigQuery feature has been enhanced to include faster processing time for larger cohorts with e.g 30,000 > samples and 65,000 > file records.

	You are now able to export cohort and cohort file manifests to a Google Cloud Storage using either .JSON or .CSV format from the cohort details page and from the File Browser page.

	We have enhanced our instructions associated with buttons to further provide directions to the end-users.

	On the File Browser page it is now possible to change how many entries are displayed at a time, as well as sort columns by clicking on the column header.

	Google Cloud Project membership is now automatically updated every six hours. If you are adding someone new to the project they will be able to use the project after six hours maximum without someone having to log in and manually refresh the project.

Bug Fixes

	You can no longer share a cohort with yourself (email currently logged into) and cause the file browser page to disable.

	DNA methylation has been re-enabled to be used with hg38 and hg19 data when working with workbooks and plotting.

	Sharing inputs have had their security restrictions tightened. This also includes the registering a service account page.

	On the File Browser page when downloading the file manifest via the CSV button you are no longer able to re-select the CSV button while the file is building.

	On the File Browser tab if you toggle between entries pages on the All Files tab it will not affect the IGV tab or Pathology Images tab entries counts display.

	On the File Browser page you can now freely toggle between entries pages with no errors displayed.

	On the File Browser page selecting filters from the left hand side while exploring pages will no longer crash and require you to back or refresh the page to fix.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcodes error message and unable to upload all the barcodes.

	API endpoint cohort.creation will include NULL values in sample counts when cohort is created.

	Duplicate entries can be entered for the register a dataset and the register a bucket on the Google cloud project details page.

	A cohort with user uploaded data present and public data present in our system e.g TCGA data, the cohort details page for the selected filters panel does not properly display the filters selected.

	On the File Browser page for Diagnostic images there is no GDC file UUID associated to them.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

April 2, 2018 v3.10 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.10]

Enhancements

	When working with the File List table you can now Export the cohort file list to BigQuery for later analysis.

	When registering or adjusting a service account to use controlled data, the page will no longer briefly appear as if no datasets had been selected. This should reduce confusion.

	Selecting the refresh project button from a registered Google Cloud Project details page will leave you on the details page rather than redirecting you to the registered Google cloud project list table page.

	On the cohort creation page, using the barcode upload page, the valid/invalid entries table can now be sorted by on any column with either ascending/descending order.

	Removing someone from the IAM and Admin list does not remove them from the web-app automatically. If the removed user still has the GCP present in their webapp interface attempting to register or refresh a service account will remove the GCP from the web app, and a display message informing them they are no longer a member of the project will be seen.

	When working with any tables that can be sorted on smaller screens, there is no longer any text overlap in the table columns.

	Character restrictions has been relaxed, you can now use characters such as []{}(); for entity names and descriptions.

Bug Fixes

	SeqPeek and CNVR can only be plotted with TCGA data, but if a cohort contains no TCGA samples the SeqPeek analysis will now return an error message saying, “The chosen cohorts do not contain samples from programs with Gene Mutation data.”

	API endpoint samples.get can now be used to return data for all three programs.

	On the adjust service account page, when attempting to remove the service account from being able to access controlled data, and then immediately trying to add the service account back to controlled data, the system will require you to verify the service account’s users again.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcodes error message and unable to upload all the barcodes.

	On the cohort File List Browser page, while you are downloading CSV files, other filters can be selected.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

February 28, 2018 v3.9 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.9]

Enhancements

	On the register a Google Cloud Project you now can only register the project ID. Registering the project name or project number will now result in an error message. Additionally, the GCP Project Name and ID will now both display on the GCP detail and list pages, and refreshing a GCP Project in the Web Application will update the Name if it was changed in the GCP console.

	For cohort creation via sets of barcodes, the barcode set (pasted in the text box or uploaded as a file) can now be a simple list of sample or case barcodes separated by newlines, commas, or tabs; the program listing is no longer needed, and you don’t need to supply the barcodes in a distinct columnar format.. The previous 3-column format will continue to work as well.

	On a worksheet, if no table is being searched the BQ table(s) used panel becomes inactive.

Bug Fixes

	When editing the name of a cohort the cancel feature is now working properly.

	When working on a worksheet the SeqPeek feature will now work with all genes.

	All genes can be plotted on a worksheet when working with a histogram.

	When registered Service Accounts for controlled data, the Adjust/Register can only be clicked once.

	When working with SeqPeek, the BQ table(s) used panel will now refresh every time even if no new data is plotted.

	When a user is removed from their Google project the user interface doesn’t remove the project from their list. Instead, the individual removed will receive error messages saying they are no longer on the project if they try to refresh the project or register the service account.

	On a registered Google Cloud Project page, the refresh button will now properly add and remove users from the project if they are added or removed from the IAM and Admin list on the Google console.

	When working on the Internet Explorer you can again create a cohort using the filter creation page.

	When using the dbGaP eRA authentication you will now be logged out at 24 hours instead of 16 hours.

	For cohort creation when uploading a large set of barcodes you will no longer return a 400 bad request error.

Known Issues

	Analysis Type: Seq peek Formatting is Elongated on occasion

	If the user shares a Cohort, neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale, it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	When uploading TARGET files using the cohort barcode creation feature from the GDC, you may get an invalid barcodes error message and unable to upload all the barcodes.

	SeqPeek and CNVR can only be plotted with TCGA data, but if a cohort contains no TCGA samples the SeqPeek analysis will still search the TCGA BigQuery tables

	API endpoint samples.get currently down and will return a 503 error for all three programs.

	On the File Browser page, while you are downloading CSV files, other filters can be selected.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

February 1, 2018 v3.8 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.8]

Enhancements

	We have enabled DNA methylation data to be used when plotting with genomic build hg38.

	The cohort view files page has been updated to File Browser. The File Browser page also now has new filters data level, data type, disease code, data format, and experimental strategy. A time stamp has also been added to the CSV file that can be downloaded.

	The IGV browser and caMicroscope are now more clearly defined and separated on the File Browser page.

	When uploading a set of barcodes to create a cohort the error message has been redefined to direct someone to the instructions.

Bug Fixes

	You can now plot DNA methylation data using genomic build hg19 when working on a worksheet.

	When registering a service account to controlled data you will no longer receive an error message when certain Google managed service accounts are also on the IAM and Admin page.

	On a worksheet, if you add new cohorts to a worksheet with pre-existing cohorts. Now the older and newly added cohorts are present on the worksheet for analysis.

	When working with a worksheet you are now able to plot gene names that contain periods.

Known Issues

	You cannot make a cohort using the cohort creation filter option on an Internet Explorer browser.

	Analysis Type: Seq peek Formatting Elongated on occasion.

	If the user shares a Cohort neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	When uploading TARGET files using the cohort barcode creation feature from the GDC you may get an invalid barcodes error message and unable to upload all the barcodes.

	SeqPeek can only be plotted with TCGA data, but if a cohort contains no TCGA samples the SeqPeek analysis will still search the TCGA BigQuery tables.

	API endpoint samples.get currently down and will return a 503 error for all three programs.

	Currently unable to use TARGET data with the IGV browser to view .bam files.

	When editing the name of a cohort the cancel feature is not working properly.

	When working on a worksheet the SeqPeek feature is currently not working with certain genes.

	Certain genes will produce a blank chart with no data on a worksheet when working with a histogram.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

December 20, 2017 v3.7 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.7]

Enhancements

	Using the ‘View Files’ page you can now view TCGA pathology images using caMicroscope!

	After logging into dbGaP you are now redirected to the user details page.

	Due to recent updates with Google, we have implemented new security requirements when working with the service accounts and attempting the access the controlled data. For more information about new requirements please go here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html#requirements-for-registering-a-google-cloud-project-service-account].

Bug Fixes

	You will no longer experience a 502 error when trying to create a new variable favorite list if you have uploaded a lot of your own data using the user data upload feature.

Known Issues

	Analysis Type: Seq Peek formatting elongated on occasion

	If the user shares a Cohort neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	When working on a workbook if you add new cohorts to the worksheet the pre-existing cohorts will be de-selected from the worksheet.

	If you have uploaded a lot of data using the User Data Upload feature, it is likely you will experience 502 error page when attempting to create a new variable favorite list.

	When uploading TARGET files using the cohort barcode creation feature from the GDC you may get an invalid barcodes error message and unable to upload all the barcodes.

	Work is underway to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

November 20, 2017 v3.6 [https://github.com/isb-cgc/ISB-CGC-WebApp/releases/tag/3.6]

Enhancements

	You can now send a cohort you have created in the web application to a new BigQuery dataset or append an existing table.

	The cohort creation by uploading barcodes feature has been extended to include .JSON and .TSV files from the Genomic Data Commons data portal.

	Created a new API endpoint to be used to return a GCS object URL given a GDC file identifier also known as a UUID.

	Updated the registered Google Cloud Project to clearly state if the project’s service accounts are active or not.

	You can now enter special characters into the comments section for workbooks and cohorts e.g URL

	On the register a service account page the Compute Engine default service account is automatically added to the enter service ID text box.

	When creating a new cohort we have implemented a text saying, “Creating cohort…” for instances when creating a new cohort takes a little longer than usual.

	We have significantly sped up loading times for the cohorts detail and cohorts table list page for users who have 50 + cohorts which caused slow loading time.

Bug Fixes

	A duplication of the exact cohort will no longer happen when you select the confirmation multiple times while the page is loading working with Set Operations.

	On the cohort details, you can no longer select the clinical feature panel and edit filters without selecting the edit button first.

	On the cohort creation page, you can use the clinical feature panel to select filters when working with the User data upload tab.

Known Issues

	Analysis Type: Seq peek Formatting Elongated on occasion

	If the user shares a Cohort neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	When working on a workbook if you add new cohorts to the worksheet the pre-existing cohorts will be de-selected from the worksheet.

	If you have uploaded a lot of data using the User Data Upload feature, it is likely you will experience 502 error page when attempting to create a new variable favorite list.

	When working with the API endpoints the sample.get for all three programs will return a 503 internal server error.

October 13, 2017 v3.5 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.5]

Enhancements

	You can now upload sample and case identifiers from programs TCGA, CCLE and TARGET to create a cohort.

	We have begun to allow the addition/removal of a service account with a new button instead of the user having to re-register the service account every time.

	For the Set Operations feature when working with cohorts has been enhanced and has become easier to work with.

	For the Set Operation Complement feature you will now create a cohort faster than before.

	You will now be displayed mouse over text when working with the New Workbook, Delete, Set Operations, and Share button on the Cohorts list details page.

	The About Us link in the top left of the page has been re-named to Homepage.

Bug Fixes

	All bam files for the TARGET program are available to be used with the IGV browser.

	On the Cohort creation page, you can now select a filter for your Cohort by selecting an option from the Clinical Feature graphs using Histological Type for program CCLE.

Known Issues

	Analysis Type: Seq peek Formatting Elongated on occasion

	If the user shares a Cohort neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	The mouse-over feature is currently disabled for program TARGET with disease code ALL.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

	We need to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

September 21,2017 v3.4 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.4]

Enhancements

	When plotting, certain values will now be displayed as categorical when before it was displayed as a numerical value e.g Tobacco Smoking History.

	The Homepage has been updated to incorporate links for TARGET and CCLE programs.

	The extended list of programs and projects on the new User Uploaded Data creation page is now displayed in alphabetical order.

	On the user details page you are now shown a confirmation box when you attempt to unlink the NIH identity account associated to the Google Identity you originally logged in with.

	When working with Workbooks you are now shown a table on the top right hand side of Worksheet which shows what BigQuery tables the information being displayed is from.

	On the Cohort creation page you can now select a filter for your Cohort by selecting an option from the Clinical Features graphs.

	On the user details page, if you attempt to associate you Google Identity to an NIH Identity that is already registered in the system to another Google Account you are given a yellow error message stating which email the NIH Identity is already associated to.

Bug Fixes

	When working with Workbooks the log scale graphing option will be saved when a user comes back to the Worksheet at another time.

	On the existing Cohorts table list page, the confirmation delete ‘blue x’ button will now remove a selected Cohort if you select another option e.g Set Operation.

	The Google Cloud Project details page refresh wheel and delete icon are now working properly for service accounts.

	The Cloud Project details page now lists the authorized datasets active with an associated service account.

	When deleting a User Uploaded program you are now sent to the existing programs list page if you delete the program. If you delete the project you stay on the program details page.

	The ownership of a Variable list, Gene and miRNa list, and User Uploaded Programs are now verified. This means you can no longer view any existing in system if you are not the original creator.

	A confirmation on the Register a Service Account page has been implemented for service accounts when the user attempts to register.

	On the Cohort creation when toggling between the tabs for the different programs, you now cannot switch tabs until the tab on display is loaded.

	We need to rework our cohort creation page to better differentiate between samples which are from image data vs. those which are not.

Known Issues

	Analysis Type : Seq peek Formatting Elongated on occasion

	If the user shares a Cohort neither the owner nor the person who was granted access to Cohort will receive a confirmation email when sharing a Cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a Worksheet, then tries to implement the log scale it will not function properly.

	The set operation for existing Cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	The mouse over feature is currently disabled for program TARGET with disease code ALL.

	A very small amount of bam files for program TARGET currently have the wrong file name and cannot be used with the IGV browser.

	When working on Firefox browser a violin plot does not display the data plotted correctly when working on a Worksheet.

August 23, 2017 v3.3 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.3]

Enhancements

	Users with NIH-approved access can now view and analyze TARGET (Therapeutically Applicable Research To Generate Effective Treatments) controlled data using service accounts and also on the IGV browser.

	You will be returned a more detailed error message when invalid characters are used with user data uploading titles.

	On the File list page you will be allowed to select only one genomic build at a time for clarity on which build will be used by the IGV browser.

	When attempting to duplicate the registration of your Google Cloud Project you are given an error message saying, “A Google Cloud Project with the id xxx-xxx-xxxx already exists.”

	If you attempt to register a service account with the same datasets it already has activated, you will be given an error message saying, “Service account xxxxxxxxxxxx-compute@developer.gserviceaccount.com already exists with these datasets, and so does not need to be registered.”

	The Data Use Certification and Agreement covering your access to all controlled data has been added to the user details page in the interface.

	The CCLE user.get API endpoint has been removed from the system due to the fact we do not currently host any controlled CCLE data.

	The format of CSV file downloaded with Download IDs button from the cohort details page has been changed to display the case and sample barcodes as two separate columns.

	From the User uploaded program detail page, you can now edit the project name and description by selecting the gear option.

Bug Fixes

	When creating a large cohort you are no longer returned a red error message.

	The sharing feature for Workbooks, Cohorts, and User Uploaded Programs has been re-activated. You must enter a valid email address that is present in the system to share the workbook, cohort, or user uploaded program. If they are not present in our system please feel free to invite them to the ISB-CGC website [https://isb-cgc.appspot.com/].

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart, you can no longer select the log option. The log option only applies to numerical options.

	When working with workbooks, selecting the Delete button multiple times will no longer result in an error, and instead return you to the Workbooks list page after successful deletion of the Workbook.

	Users can plot user uploaded data when working with workbooks when using variables and cohorts from the same files that were uploaded.

	The cohort.list API endpoint will display the correct cases count for cohorts listed.

	The Download File List as CSV on the File List page will download the correct information when genomic build hg38 is selected.

	You are no longer able to add XSS-vulnerable characters to the edit section for user uploaded data.

	An improved error message is displayed when attempting to register a Google Project you are not associated with.

	Making a new Gene and miRNA set from a Workbook will no longer result in lowercase gene and miRNA names.

	The TCGA Sample.get API endpoint will no longer return a response with sample ID duplicates.

Known Issues

	Analysis Type : Seq peek Formatting Elongated on occasion

	If the user shares a cohort neither the owner nor the person who was granted access to cohort will receive a confirmation email when sharing a cohort.

	CCLE data cannot be plotted when working with workbooks. ISB-CGC will resolve this functionality after the GDC formally releases CCLE data.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	When working with working with workbooks the log option is not working properly for the plot settings.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When plotting, certain values will be displayed as numerical when it should be a categorical value e.g Tobacco Smoking History.

	The mouse over feature is currently disabled for program TARGET with disease code ALL.

July 31, 2017 v3.2 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.2]

Enhancements

	You will be returned a more detailed error message when using invalid characters when working with user data uploading titles.

	On the File list page you will are allowed to select only one genomic build at a time for better clarification of which build you will view on the IGV browser.

Bug Fixes

	When working with Swap Values button on a worksheet, the log option selected for either axis is now carried over as well when the swap values button is selected.

	On the IGV browser when working with TCGA data build hg38 the interface will no longer return a No feature found with name “efgr” at the bottom of the IGV browser page.

	When working with the cohort.create API endpoint you have the ability to create a large cohort with the barcode filter without a timeout error.

	When creating a cohort with the cohort.create API endpoint you can view the list of barcodes from the cohort details page in the ISB-CGC user interface irrelevant of size.

	When working with the create a new variable favorites list page, you can now create a variable list using the USER DATA tab.

Known Issues

	The sharing feature for Workbooks, Cohorts, and User Uploaded Programs is currently disabled

	Analysis Type : Seq peek Formatting Elongated on occasion

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	Cannot plot any data if you use a CCLE data cohort on a worksheet.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart you can select the log option. The log option only applies to numerical options.

	When working with workbooks, if you select the delete confirmation button multiple times while the page is loading you will be sent to an error page.

	You currently cannot plot user uploaded data when working with workbooks.

	When plotting, certain values will be displayed as numerical when it should be a categorical value e.g Tobacco Smoking History.

	The mouse over feature is currently disabled for program TARGET with disease code ALL.

	The cohort.list API endpoint will display the incorrect cases count for cohort listed.

	The Download File List as CSV on the File List page downloads the wrong information when genomic build hg38 is selected.

	You are currently able to add non-whitelist characters to edit section for user uploaded data.

	You are returned a vague error message on the register a Google Cloud Project page when attempting to register a Google Project you are not associated to.

	The samples and cases filters have not been removed from the cohort.list API endpoint and are visible as a possible filter.

	The user.get CCLE program API endpoint will return a 503 internal server error.

	When creating large cohort you will be given a red error message saying, “There was an error saving your cohort; it may not have been saved correctly.”

June 14, 2017 v3.1 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.1]

Known Issues

	Analysis Type : Seq peek Formatting Elongated on occasion

	The CCLE data in the Webapp is not exactly the same as the CCLE data in BigQuery.

	Users cannot plot any data from a CCLE cohort on a worksheet.

	In the Webapp, the log scale on graphs does not function properly for duplicated worksheets.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	Swap values is not working properly for the plot settings.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart you can select the log option. The log option only applies to numerical options.

	When working with workbooks, if you select the delete confirmation button multiple times while the page is loading you will be sent to an error page.

	You currently cannot plot user uploaded data when working with workbooks.

	When plotting, certain values will be displayed as numerical when it should be a categorical value e.g Tobacco Smoking History.

	On the IGV browser when working with TCGA data build hg38 you get a No feature found with name “efgr” at the bottom of the iGV browser page.

	On the cohort creation page for TCGA data the filters disease code and project short name NA is an option which is not a valid disease.

	The mouse over feature is currently disabled for program TARGET with disease code ALL.

	The sharing feature for Workbooks, Cohorts, and User Uploaded Programs is currently disabled.

	A number of TCGA and CCLE case IDs shown below will have been removed from all cohorts since they are no longer available from NCI’s Genomics Data Commons, and ISB-CGC is trying to mirror that data as closely as possible.

	TCGA cases:

TCGA-33-4579, TCGA-35-3621, TCGA-66-2746, TCGA-66-2747, TCGA-66-2750, TCGA-66-2751, TCGA-66-2752, TCGA-AN-A0FE, TCGA-AN-A0FG, TCGA-BH-A0B2, TCGA-BR-4186, TCGA-BR-4190, TCGA-BR-4194, TCGA-BR-4195, TCGA-BR-4196, TCGA-BR-4197, TCGA-BR-4199, TCGA-BR-4200, TCGA-BR-4205, TCGA-BR-4259, TCGA-BR-4260, TCGA-BR-4261, TCGA-BR-4263, TCGA-BR-4264, TCGA-BR-4265, TCGA-BR-4266, TCGA-BR-4270, TCGA-BR-4271, TCGA-BR-4272, TCGA-BR-4273, TCGA-BR-4274, TCGA-BR-4276, TCGA-BR-4277, TCGA-BR-4278, TCGA-BR-4281, TCGA-BR-4282, TCGA-BR-4283, TCGA-BR-4284, TCGA-BR-4285, TCGA-BR-4286, TCGA-BR-4288, TCGA-BR-4291, TCGA-BR-4298, TCGA-BR-4375, TCGA-BR-4376, TCGA-DM-A286, TCGA-E2-A1IP, TCGA-F4-6857, TCGA-GN-A261, TCGA-O2-A5IC, TCGA-PN-A8M9

	CCLE cases:

LS123, LS1034

	The number of cases and samples when viewed in the User Interface as compared to the BigQuery tables vary across all three projects (TCGA, TARGET, and CCLE). This is because the user interface reflects the data available at the Genomic Data Commons, whereas data in BigQuery reflects either data at the original TCGA data coordinating center supplemented with Genomic Data Commons Data (for TCGA and CCLE), or for TARGET, data received from the TARGET data coordinating center, not the Genomic Data Commons.

	We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

	For TARGET data the clinical and Gene Expression files themselves are available in the system.

Enhancements

	You will be returned a more detailed error message when uploading your own user data.

	On the Data Availability section on the cohort details page now displays the HG38 somatic mutation information for program TCGA.

Bug Fixes

	There is now a 2000 character limit for the workbook title section.

	When selecting the cohort link to complete analysis section on a worksheet will send you to the existing cohort list table page.

	Latency issues when working with the cohort creation page have been resolved.

	When working with TCGA data the IGV browser will not give you a 401 or a 404 error.

	The mouse over feature will display the long name for disease code and project short name for all programs.

	On the cohort creation page you can now filter with the HG38 somatic mutation data by gene for program TCGA using the Molecular tab.

	On the IGV Browser when working with TCGA genomic build hg38 you will no longer get a 404 error.

	On the cohort creation page when working with User Data tab, the left filter panel sorts the other filter.

	Cohorts created with API specific filters are now accessible to access by their cohort details page.

	You are now able to plot miRNA data with genomic build hg38 for TARGET data.

May 25, 2017 v3.0 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/3.0]

In collaboration with the GDC we now have TARGET pediatric cancer data available for analysis in the user interface. You are now able to create cohorts and plot analysis with information from TARGET, TCGA, and CCLE data.

In addition, we have replaced the previous APIs with a new version that supports the new user interface.

We have also released the analyzed data types that are based on genome build GRCh38 for TCGA and TARGET data. GRCh37 (HG19) is also still available for TCGA, TARGET, and CCLE datasets.

Workbooks, cohorts, and variables favorites list created before the data structure migration will still be available for analysis and have been labeled as legacy and version 1. If you have difficulty using version 1 workbooks, please contact us

Known Issues

	Analysis Type : Seq peek Formatting Elongated on occasion

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If the user shares a cohort neither the owner nor the person who was granted access to cohort will receive a confirmation email.

	Cannot plot any data if you use a CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart you can select the log option. The log option only applies to numerical options.

	When working with workbooks, if you select the delete confirmation button multiple times while the page is loading you will be sent to an error page.

	When working on a scatter plot the Tobacco Smoking being used as the Legend is displayed in numerical values when it should be displayed as categorical values.

	The character limit for a workbook title name is currently inactive, if you exceed the possible limit you will be sent to an error page.

	You currently cannot plot user uploaded data when working with workbooks.

	Selecting cohort from worksheet “To Complete Analysis” section will send you to a 400 Bad Request error.

	You will experience latency issues when working with the create a new cohort page.

	When plotting, certain values will be displayed as numerical when it should be a categorical value e.g Tobacco Smoking History.

	The Data File Availability Panel for program CCLE in currently inactive when on the cohort details page and also editing a cohort with CCLE data.

	On the File List page you currently unable to access the bam files for the IGV Browser associated to build hg38 when working with TCGA data.

	A number of TCGA and CCLE case IDs shown below will have been removed from all cohorts since they are no longer available from NCI’s Genomics Data Commons, and ISB-CGC is trying to mirror that data as much as possible.

	TCGA cases:

	TCGA-33-4579, TCGA-35-3621, TCGA-66-2746, TCGA-66-2747, TCGA-66-2750, TCGA-66-2751, TCGA-66-2752, TCGA-AN-A0FE, TCGA-AN-A0FG, TCGA-BH-A0B2, TCGA-BR-4186, TCGA-BR-4190, TCGA-BR-4194, TCGA-BR-4195, TCGA-BR-4196, TCGA-BR-4197, TCGA-BR-4199, TCGA-BR-4200, TCGA-BR-4205, TCGA-BR-4259, TCGA-BR-4260, TCGA-BR-4261, TCGA-BR-4263, TCGA-BR-4264, TCGA-BR-4265, TCGA-BR-4266, TCGA-BR-4270, TCGA-BR-4271, TCGA-BR-4272, TCGA-BR-4273, TCGA-BR-4274, TCGA-BR-4276, TCGA-BR-4277, TCGA-BR-4278, TCGA-BR-4281, TCGA-BR-4282, TCGA-BR-4283, TCGA-BR-4284, TCGA-BR-4285, TCGA-BR-4286, TCGA-BR-4288, TCGA-BR-4291, TCGA-BR-4298, TCGA-BR-4375, TCGA-BR-4376, TCGA-DM-A286, TCGA-E2-A1IP, TCGA-F4-6857, TCGA-GN-A261, TCGA-O2-A5IC, TCGA-PN-A8M9

	
	CCLE cases:

LS123, LS1034
- The number of cases and samples when viewed in the User Interface as compared to the BigQuery tables vary across all three projects (TCGA, TARGET, and CCLE). This is because the user interface reflects the data available at the Genomic Data Commons, whereas data in BigQuery reflects either (for TCGA and CCLE) data at the original TCGA data coordinating center supplemented with Genomic Data Commons Data, or for TARGET, data received from the TARGET data coordinating center, not the Genomic Data Commons.
- We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].
- For TARGET data the clinical and Gene Expression files themselves are available in the system. The bam files will be available soon!

Enhancements

	You will be returned a more detailed error message when uploading your own user data.

	The user interface now displays the same nomenclature as the Genomic Data Commons (GDC).

Bug Fixes

	The user data upload is enabled and users can now upload their own datasets and create cohorts using existing programs and newly uploaded data by the user.

	You can now have multiple Google Cloud Projects associated to your account and use only one bucket and dataset on one project with no interference.

April 12, 2017 v1.15 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.15]

Known Issues

	We are currently having issues viewing bam files using the IGV browser for TCGA and CCLE data. We are working to fix the issue and it should be resolved as soon as possible.

February 26, 2017 v1.14 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.14]

Known Issues

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If the user shares a cohort neither the owner nor the person who was granted access to cohort will receive a confirmation email.

	Cannot plot any data if you use a CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	On the existing cohorts table list page, the confirmation delete ‘blue x’ button does not remove selected cohort if you select another option e.g Set Operation. The same issue can be found in reverse if you select the ‘blue x’ on the confirmation page for set operation you can then select the delete button and see the cohort on the confirmation panel.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	The set operation for existing cohorts complement is behaving exceptionally slow.

	A duplication of the exact cohort happens when you select the confirmation multiple times while the page is loading working with Set Operations.

	When working with a new worksheet or a duplicate worksheet with workbooks for categorical features e.g bar chart you can select the log option. The log option only applies to numerical options.

	If multiple Google Cloud Projects are registered through the user interface, it is advised to to add Google buckets and BigQuery datasets to both projects currently.

	When working with workbooks, if you select the delete confirmation button multiple times while the page is loading you will be sent to an error page.

	When working on a scatter plot the Tobacco Smoking being used as the Legend is displayed in numerical values when it should be displayed as categorical values.

	The character limit for a workbook title name is currently inactive, if you exceed the possible limit you will be sent to an error page.

	We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

	There will be a reduced number of releases and features over the next month (or so) while we do some rework required for enabling the distribution of additional data sets and types copied from the NCI-GDC. The new data type is TARGET data, and different analyzed data types are based on the hg38 genome builds. Stay tuned in likely the early part of 2017.

	User data uploads are currently disabled. Any projects you have previously uploaded will continue to be available in your Saved Projects list, and you can continue to work with them, but new data cannot be added at this time. We are working on bringing this function up again, please stay tuned.

Bug Fixes

	User will no longer be sent to the Social Network Login page when trying to login. If this occurs, please feel free to send ISB-CGC feedback using this link feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

November 30, 2016 v1.13 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.13]

Known Issues

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	If a researcher leaves the workbooks inactive the page freezes.

	On the existing cohort list page for the delete button, select the blue x does nothing. It should be disabled.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	Some plot setting are saved or retrieved when working with worksheets.

	The set operation for existing cohorts intersection is behaving exceptionally slow.

	We have removed Google Genomics functionality from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Also we are restructuring the handling of multiple Programs of data. Please feel free to provide here [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

	There will be a reduced number of releases and features over the next month (or so) while we do some rework required for enabling the distribution of additional data sets and types copied from the NCI-GDC. The new data type is TARGET data, and different analyzed data types are based on the hg38 genome builds. Stay tuned in likely the early part of 2017.

Bug Fixes

	The user can no longer see BCGSC expression as an option when plotting genes if user does not select center filter on worksheet.

	Worksheets added to an existing workbook now behave the same as the original worksheet.

	Cohort set operations no longer performing exceptionally slow.

November 16, 2016 v1.12 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.12]

Known Issues

	Analysis Type : Seq peek Formatting is Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	If a researcher leaves the workbooks inactive the page freezes.

	On the existing cohort list page for the delete button, selecting the blue x does nothing. It will be be disabled in a future release.

	On the cohort view files page there are capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	Some plot setting are saved or retrieved when working with worksheets.

	Worksheets added to an existing workbook behave differently than the original worksheet.

	The user can see BCGSC expression as an option when plotting genes if user does not select center filter on worksheet.

	The set operation for existing cohorts intersection is behaving exceptionally slow.

	We are removing Google Genomics from the user interface. You will still be able to access CCLE open access data in Google Genomics from the command line. We are open to adding Google Genomics controlled data back into the user interface if you have a use case for it. Please feel free to provide feedback [https://groups.google.com/a/isb-cgc.org/forum/#!newtopic/feedback].

Enhancements

	A warning will be displayed if the user is trying to plot with required data missing e.g. must select an analysis, gene or variable, and a cohort to create a plot.

	On the project details page user will be sent to upload new study in existing project tab when they select upload data.

	When the user plots a graph with NA values, you will be returned a notification stating no valid data was found.

	There is no longer text overlapping on the Cloud Hosted Datasets readthedocs page in the documentation.

Bug Fixes

	The user can no longer add the same gene symbol twice if list to the same worksheet even if they have given their list different names.

	When the user selects multiple cohorts for color by feature for scatter plot all cohorts selected display on the graph.

	On the existing cohorts table for public cohorts, the new workbook and set operations buttons are now active.

	For all analysis types the x-axis and y-axis with certain variables text will no longer overlap and is displayed clearly.

	The upload data button is disabled on the review files page when no buckets or datasets are associated.

	Someone with multiple eRA accounts will be no longer have issues when trying to access controlled data.

November 2, 2016 v1.11 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.11]

Known Issues

	The user can add same gene twice if list to the same worksheet it they have different names.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When the user plots a graph with NA values the UI returns a blank graph.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	If a researcher leaves the workbooks inactive the page freezes.

	On the existing cohort list page for the delete button, selecting the blue x does nothing. It should be disabled.

	On the cohort view files page capitalization bugs on the Platform filter.

	Swap values is not working properly for the plot settings.

	Some plot settings are saved or retrieved when working with worksheets.

	On the existing cohorts table for public cohorts, the new workbook and set operations buttons are currently inactive.

	Worksheets added to an existing workbook behave differently than the original worksheet.

Enhancements

	Introduce user data upload functionality see documentation here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/program_data_upload.html].

	More fluid zoom feature when working with analysis worksheets.

	Case Sensitivity is now maintained in creating and displaying Workbook names throughout the entire User Interface.

	You can now create a new cohort from the menu bar.

	Variables menu bar is displayed similar to the rest of the favorites variables.

	On the dashboard, all create new buttons/links are identical.

	Owner of what is shared either a workbook or a cohort is able to remove multiple viewers. Viewers are also able to remove themselves.

	Removed BCGSC gene expression from the UI gene specification selection for plot analysis.

Bug Fixes

	X or Y- Axis for text no longer overlaps on worksheet for any analysis type, except for violin plot.

	The Legend is no longer displayed elongated when you use multiple cohort for color by feature for violin plot.

	miRNA_expression_values_fixed table in dataset 2016_07_09_tcga_data_open reflect only hg19.mirbase20 files.

	You are now able to duplicate a workbook that has been shared with you by someone else.

	Added pseudo-counts to the mosaic plots on the create new cohort page. This allows you to be sure of always being able to see (and select) the smallest contributors in these mosaics.

	Removing the filter from the filter confirmation from the create new cohort page, this will remove it from the rest of filter selections.

	Select the “check-all” feature on the create new cohort page will no longer cause duplicates on the selected filters panel.

	Create cohort from plot selection now works with all analysis types.

	Data inconsistencies between the create new cohort histogram filter and the most recent BigQuery datasets has been addressed and resolved.

September 21, 2016 v1.10 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.10]

Enhancements

	Text in confirmation box of a duplication of a workbook has been enhanced.

	On the registered Google Cloud Projects page, icon has been added for the user to go directly to the Google Cloud Console page if desired.

	When the a Service Account is removed from the Access Control List, the project owner is sent an email with an explanation as to why the account was removed.

	IGV File List page displays of which page user is browsing.

Bug Fixes

	For a Cubby hole plot the x - axis name can be seen clearly.

	On a duplicate worksheet when working with gene specifications, user is able to select between all options multiple times.

	Page becomes elongated when the user builds a Cubby Hole plot.

	The selected variables for the plot setting on a worksheet are saved after the user leaves the workbook.

	When registering a Google Cloud Project the user is displayed the list of emails associated to the GCP only once.

Known Issues

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	If the user shares a cohort they do not receive a confirmation email.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When the user plots a graph with NA values the UI returns a blank graph.

	When a user duplicates a worksheet, then tries to implement the log scale it will not function properly.

	There are duplicate rows in the molecular data table in BigQuery.

September 7, 2016 v1.9 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.9]

Enhancements

	Dictionary mapping feature types to units for use in plot displays added to worksheets.

	The user now has the option to make the axis logarithmic if the plot can display continuous numerical data for eg. mRNA expression levels.

	The NIH username entry is now case insensitive for dbGaP authorization.

	The mouse over feature works when the user has created a long workbook name on the existing workbooks table page.

	The mouse over functionality was added to the worksheet name within a workbook.

Bug Fixes

	The order by ascending or descending feature is now working properly for the existing workbooks table page.

	Tobacco Smoking History filter in the create cohort page displays the filters in descriptive values.

	The user can now select all existing cohorts when on the add cohort(s) to worksheet page.

	The gene specification selection on the worksheet page is now working properly.

	When a user shares a workbook with someone the person who received viewer access to the workbook is sent a confirmation email. If the person who shared the workbook then deletes the workbook before it’s opened, then the person clicks the invitation link the person is sent to the unknown invitation page. The button to go back to the Dashboard page appears like this, “Your Dashboard”

	The user is sent an email when the Service Account is removed the Access controlled list for having a user associated to the project who is not dbGaP authorized.

Known Issues

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	Page becomes elongated when the user builds a Cubby Hole plot.

	X-axis name cut off for cubby hole plot when x-axis has only 3 criteria.

	If the user shares a cohort they do not receive a confirmation email.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	When the user creates a duplicate worksheet,the bar chart with a gene with specification protein can freeze when selecting an option for the Select Feature.

	Cannot plot any data if you use CCLE data cohort on a worksheet.

	When the user plots a graph with NA values the UI returns a blank graph.

	When a user duplicates a worksheet, some functionality related to plotting will not function properly on the duplicate worksheet.

August 24, 2016 v1.8 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.8]

Known Issues

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Analysis Type : Seq peek Formatting Elongated.

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	Page becomes elongated when the user builds a Cubby Hole plot.

	X-axis name cut off for cubby hole plot when x-axis has only 3 criteria.

	When the user shares a cohort they do not receive a confirmation email.

	User will be spammed with email every one minute when their service account is removed from the ACL control list. To stop this, please either delete your service account from the ISB-CGC interface, or remove the GCP project member(s) who is (are) not authorized to access the controlled data set. (see documentation here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html]). We are planning to reduce the frequency of the notification emails to once per day.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	When the user creates a duplicate worksheet,the bar chart with a gene with specification protein can freeze when selecting an option for the Select Feature.

	When a user shares a workbook with someone the person who received viewer access to the workbook is sent a confirmation email. If the person who shared the workbook then deletes the workbook before it’s opened, then the person clicks the invitation link the person is sent to the unknown invitation page. The button to go back to the Dashboard page appears like this, “Your Dashboard{“

	Cannot plot any data if you use CCLE data cohort on a worksheet.

Enhancements

	When the researcher is on the Register Service Account page, after they have submitted the Service Account associated to their Google Cloud Project a table that shows who is authorized will be prompted.

	There is now a column that says “Has NIH Identity”, before it said, “Has eRA Commons”.

	When the researcher creates a new cohort with more than 20 filters chosen the URL exceeds the limit of 2K characters and this affects the count for the Details panel. Therefore the user is now prompted with an alert box that will say, “You have selected too many filters. The current counts shown will not be accurate until one or more filter options are removed.” if this is ever the case.

	In the user details page, if the researcher has not registered a Google Cloud Project it will say, “Register a Google Cloud Project” on the link.

Bug Fixes

	The researcher can now delete whom they share cohort with from existing cohorts table.

	After 24-hours of use, a dbGaP authorized user can re-authenticate through the link provided in the user details page.

	The variable favorites list table page can now support a long title for the variable list.

	The filter name will appear aligned in the verification panel when the filter is name too long for the create in cohort filter confirmation selection on the create new cohort page.

	Grouped Data Type filter counts (Methylation, RNA Seq, miRNA Seq) now behave like the other count groups. The counts will behave as grouped values.

	The user can no longer select a categorical variable for selection for Histogram plot.

	The Filter token displays are now shown in ‘readable’ names when working with cohort filters.

	Controlled access BAM files are now viewable viewable in the IGV browser after the user has authorized their credentials.

	The user can now unlink an eRA commons account from their Google Identity in the user detail page.

	The violin plot was inconsistently failing. We have updated the JavaScript, therefore the Violin plot no longer fail.

August 10, 2016 v1.7 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.7]

New Features

	The researcher can now create a cohort of participants and samples based on the presence of a gene mutation in a specified gene. Look for the new “Molecular” tab when you are creating a cohort.

	The bioinformatics programmer now has the ability to associate their Google Cloud Project’s Service Account. This allows the researcher to run computational pipelines from Google Virtual Machines using TCGA Controlled data (e.g. BAM files) for seven days before they have to reauthorize. For more information please select here [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html].

Known Issues

	The user can add same gene twice if list to the same worksheet it they have different names.

	The Bar chart on the worksheet panel renders overlapping text.

	Cannot delete whom you share cohort with from existing cohorts table.

	Analysis Type : Seq peek Formatting Elongated

	The CCLE data in GUI is not exactly coordinated the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count is off by one.

	After 24-hours of use, a dbGaP authorized user has to logout and then log back in to be prompted with NIH login link to re-access controlled data.

	User will occasionally be sent to the Social Network Login page when trying to login. If this occurs, please go the the home page of the Web Application and try again.

	Page becomes elongated when the user builds a Cubby Hole plot.

	X-axis name cut off for Cubby Hole plot when x-axis has only 3 criteria.

	When the user shares a cohort they do not receive a confirmation email.

	When a name is too long for variable favorites list table, the Last Updated” column will appear cut off.

	Filter name will appear off the verification panel when the filter is name too long for the create in cohort filter selection.

	Grouped Data Type filter counts (Methylation, RNA Seq, miRNA Seq) don’t behave like other count groups. The counts behave as though the values were for distinct categories.

	User will be spammed with email every one minute when their service account is removed from the ACL control list. To stop this, please either delete your service account from the ISB-CGC interface, or remove the GCP project member(s) who is (are) not authorized to access the controlled data set. (see documentation here). We are planning to reduce the frequency of the notification emails to once per day.

	The user can select a categorical variable for selection for Histogram plot, and will return a graph with no data.

	The Legend is displayed elongated when you use multiple cohort for color by feature for violin plot.

	When the user selects multiple cohorts for color by feature for scatter plot they do not display in chart.

	When the user creates a duplicate worksheet,the bar chart with a gene with specification protein can freeze when selecting an option for the Select Feature.

Enhancements

	The user now has the option to select all or deselect all possible filters for any tab that has more than 10 possible options in the create new cohort page.

	The user can now set all existing tables by either ascending or descending order.

	The cohort_id has been added to the detail cohort page. This allows the user to reference a desired cohort with ease in the API endpoints.

	When creating a new cohort, the user is given the full description for sample type in the selected filters panel.

Bug Fixes

	Histological Type entries in create new cohort page on the user interface now match the Google BigQuery entries in terms of capitalization.

	Filters for data type counts in left panel currently is now working properly.

	When a user sets a cohort as Color by feature for violin plot legend will be set to cohort. Then when the user sets another color by feature it will update the legend.

	The user can no longer make a gene list without selecting a gene first.

	The user can now list the Last Modified section for the existing cohort table by either ascending or descending order.

	In the create new cohort page for the data type tab, the user can now select either True or False for DNA Sequencing, Protein, and SNP Copy Number filters.

	When the user edits a new cohort and sets the edited cohort to return zero samples, the user will be prompted to select different set of filters.

July 20, 2016 v1.6 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.6]

Known Issues

	The user can add same gene twice if two identical worksheets with different names are uploaded.

	The Bar chart on the worksheet panel renders overlapping text.

	User cannot delete whom you share cohort with from existing cohorts table.

	Analysis Type : Seq peek Formatting Elongated.

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count off by one.

	Histological Type entries in create new cohort page on the user interface should match the Google BigQuery entries in terms of capitalization.

	When a user sets a cohort as Color by feature for violin plot legend will remain cohort.

	After 24 hour dbGaP authorization runs out the user is unable to re authenticate. (If you have this issue, please log out and log back in to be prompted with login link for dbGaP authorization.)

Enhancements

	Created ability in GUI to make cohorts based on presence of an HPV status.

	Created ability in GUI to make cohorts based on BMI value.

	In the details panel for existing cohort have a section that shows the ISB-CGC cohort_id.

	Enhancements of GUI to view submenu item in different screen sizes and resolutions.

	New version of IGV javascript installed.

Bug Fixes

	User can no longer add same filter to existing cohorts.

	Optimized Security in the user interface.

	If a user opens a shared cohort it will appear once on the dashboard.

	Pathologic State Filter in create cohort Stage is displayed capitalized.

	Filter counts with 0 value do list when editing a pre-existing cohort.

	Filters for data type counting in left panel is working properly.

	After 24 hour dbGaP authorization runs out the user is able to re authenticate.

	User can not create new gene list without giving the gene list a name.

July 6, 2016 v1.5 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.5]

Known Issues

	The user can add same gene twice if list to the same worksheet it they have different names.

	The user can add same filter to existing cohorts.

	The Bar chart on the worksheet panel renders overlapping text.

	Cannot delete whom you share cohort with from existing cohorts table.

	Analysis Type : Seqpeek Formatting Elongated.

	The CCLE data in GUI is not parallel to the CCLE data in BigQuery.

	If a user opens a shared cohort it will appear twice on the dashboard.

	If a user creates a cohort with sample type filter Cell Lines and CCLE the total number of samples count are off by one.

	Pathologic State Filter in create cohort Stage should be displayed capitalized.

	Histological Type entries in create new cohort page on the user interface should match the Google BigQuery entries in terms of capitalization.

	Filter counts with 0 value don’t list when editing a pre-existing cohort.

	Filters for data type counting in left panel currently is not working properly.

Enhancements

	A user can only select the cloud storage checkbox if he or she has been authenticated and authorized through the user details page. Otherwise the user can view the cloud storage checkbox but there will be a disabled cursor icon when the user hovers over in an attempt to select the checkbox.

	The counts for the queries were refactored to match what was done for the APIs .

	The Download File List as CSV was refactored to a maximum of 65,000 files at once.

	Date formats on Workbooks, Cohort, Gene, and Variables list pages all reflect the same format.

	The Last Updated columns to variable and gene lists were added to the user Dashboard

Bug Fixes

	The user can now select a cohort in the color by feature section for the violin and the scatter plots in the worksheet section.

	The Gene list variable used for analysis in the worksheet plot settings section is the exact gene as compared to a gene that contains the string.

	The Comments button for both the workbook and the cohort section, when the user clicks the request multiple times within one second the user interface will not post duplicate comments in the comments section.

	The user can now select gene HP in Create Gene list favorite page to be used for analysis. For worksheet analysis the user now has ability to select different genes once one already selected and utilized for analysis.

	In the variable favorites table, the menu for a specific variable will no longer be cut off once a certain set of variables list are exceeded.

	A 400 Error pop up window will no longer appear as the user transitions from the File List page to IGV browser page.

	The Public Data Availability section will no longer display any cut off if the user drags data type to the left of the page away from the panel itself, in detail page of existing cohort or the create new cohort page.

	When the user edits a cohort, details section will display which filter(s) were applied for each update.

	Cloud storage path in CSV file download for GA/BCGSC and GA/UNC V2 platforms can now be viewed.

	The menu bar will display existing list for variable favorites list, gene favorites list, cohorts, and workbooks with no cut off.

	When the user has selected a variable for the y-axis, the chart will display the selected variable in the charts.

	When the user clicks Save Changes when modifying an existing cohort the user can will no longer be spammed with multiple cohorts created at once when clicking the button multiple times within one second.

	The Save cohort Endpoint default example for v1 now works properly.

	For the cohort_list API endpoint v1 will now pull only the cohort_id you specified.

June 8, 2016 v1.4 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.4]

Known Issues

	The user can add same gene twice if list has different names.

	The user can add same filter to existing cohorts.

	In the Create new Cohort page, the left filters (#) does not re-populate as you select filters to match the sample number in clinical feature panel.

	The bar chart renders overlapping text in the x-axis and y-axis for certain variables.

	A user cannot delete whom you share a cohort with from the existing cohorts table.

	On a worksheet with the Analysis Type : Seq peek, the formatting will display Elongated when the user selects a certain gene.

	CCLE data in GUI is currently not parallel the CCLE data in BigQuery.

	User currently cannot select a cohort in the color by feature section in a worksheet.

	The Gene list used for analysis currently uses genes similar as to original gene and well as the specific gene added to list, in the plot settings menu.

	The comments button for both workbooks/cohorts, if user clicks the comment button multiple times within one second will post duplicate comment.

	User currently cannot select gene HP or gene’s with only two letters in the Create Gene list favorite page.

	In Violin plot - the user has no ability to select a different gene once one is already selected.

	In the variable favorites table, the menu for a specific variable will be cut off once a certain set of variables list are exceeded.

	A 400 Error pop up window will appear as the user transitions from the File List page to IGV browser page.

	Public Data Availability section will be cut is user drags data type title to the left of the page away from the panel itself,in detail page of existing cohort.

Enhancements

	Upgraded system from using Django 1.8 to Django 1.9.

	A link to the google cloud platform has been added to the user details page.

	The TCGA filter is selected as the default project when creating a new cohort.

	When the user clicks on the browser back button, the user will remain on the same worksheet that they were previously on.

	When the user goes adds a new gene list, variable favorites list, and/or cohort from the worksheet data type panel, the button will display “Apply to Worksheet”.

	The feedback/help section has been moved to the top of the page to provide the user a more convenient way to send us feedback.

Bug Fixes

	User can no longer add a duplicate gene to same gene favorites list.

	To edit a gene name the user must now delete and re-type the desired gene name.

	The functionality of a duplicate worksheet drop down menu reflects the same functionality of the original worksheet.

	The Last Updated section reflects any changes made to the variable list, cohort list, and gene list in their corresponding tables.

	The File list page now allows the user to add a maximum of five files to use in the IGV browser between all the pages in the file list table.

	When a user hovers over clinical feature panel for Sample Type and Tumor Tissue Type the top row when hovered over the name is displayed clearly.

	Order by Ascending/Descending is working properly for Existing Cohorts table page.

	The user is now able to plot gene’s with a hyphen(-) in the gene name itself.

	The user is now able to download a maximum of 85,000 files at a time, in the File List page for a selected cohort.

May 10, 2016 v1.3 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.3]

Known Issues

	A user can add same gene twice if identical gene list have different names.

	The user can add same filter already selected to an existing cohort.

	The create new Cohort left filters number count does not re-populate as you select filters to match sample number count in clinical feature panel.

	When a Bar chart renders overlapping text is displayed on the x-axis of the plot.

	Cannot delete whom you share a cohort with from the existing cohorts table only from the details page of a cohort.

	Analysis Type : Seq peek formatting is elongated when a user selects certain gene for analysis. Using the gene TP53 can reproduce this issue.

	The CCLE data in GUI currently does not parallel the CCLE data in BigQuery.

	A user can add a duplicate gene to same gene favorites list in the create new gene list page.

	By double clicking a gene name in the create new gene list page, the gene will expand but display a blank space.

	A duplicate worksheet will display the color by feature variables twice in the drop down list.

	A user currently cannot select a cohort in the color by feature section.

	The Gene list drop down list used for analysis should be exact gene only.

	The comments button for both workbook and cohort comments section, if the user is to click comment button multiple time within one second, this action will post a duplicate comment.

	The last Update section should reflect any changes made to variable list, cohort, and gene list for their corresponding tables.

	The user cannot select the gene HP in the Create Gene list favorite page.

Enhancements

	Data Use Certification Agreement link updated and the help link was removed. -

	The Data Type section in the Create new Cohort page name change from MIRNA Sequencing to miRNA Sequencing and SNP CN to SNP Copy-Number.

	The number of patients is now dynamically displayed in the create new cohort page when selecting filters in the details panel.

	The number of samples is now dynamically displayed in the create new cohort page when selecting filters in the details panel.

	By default in the create new cohort page, you will have the TCGA data filter selected.

	When creating a cohort, checking feature boxes will be throttled so as to avoid miss-represented data.

	Tooltips were added to the Sample Type section in the clinical features panel.

	Minor changes were made in personal details page.

Bug Fixes

	The Clinical Features Panel in the create new cohort page will no longer display BRCA even if unselected.

	The last updated section in existing workbooks panel does update when changes are made to existing workbook.

	Set operation Union patient number is working correctly.

	Upon duplicating a cohort it will duplicate the selected filter(s) as well.

	User is able to download file list as csv for any cohort with any filter selected.

	There is no legend cut off for violin plot or any other analysis type when the color by feature is set to Prior Diagnosis or any other variable.

	When user switches gene in plot settings the feature choices for that specification will refresh.

	The variable clinical search feature works properly when the user searches for clinical variables and then are used for analysis.

April 27, 2016 v1.2 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.2]

Known Issues

	Can add same gene twice if list has different names.

	User can add same filter to existing cohorts.

	Create new Cohort left filters (#) does not re-populate as you select filters to match sample # in clinical feature panel.

	Clinical Features Panel in create new cohort page will still display BRCA even if unselected.

	Last updated section in existing workbooks panel does not update when changes are made to existing workbook.

	Bar chart renders overlapping text.

	Set operation Union patient # off by one.

	Legend Name cut off when name is too long.

	Upon duplicating a cohort it duplicates the selected filter as well.

	Cannot delete whom you share cohort with from existing cohorts table.

	Unable to down file list as csv for any other cohort only selected filter CCLE.

	Legend Cut Off for violin plot when color by feature set to Prior Diagnosis.

	When user switches gene in plot settings the feature choices for that specification disappears.

Enhancements

	The comments section now has a max number of characters 1000 limit.

	Link created to Extend controlled access period to 24-hours from the moment the link is clicked.

Bug Fixes

	A user can now click new worksheet multiple times within a few seconds and only produce one sheet.

	The user must now add a new filter in an existing cohort to edit it the cohort.

	The duplicate button for an existing cohort will only make one duplicate at a time.

	Clicking 150+ selected filters will not create an error page.

	Cancel button on Create new gene list page will send you to Gene list favorites table menu.

	Violin plot : User can not add categorial value to y-axis.

	If user edits an existing cohort, the old filter(s) will not be removed.

	If a new worksheet is generated, the worksheet functionality is working properly.

	User will get the ‘500: There was an error while handling your request. If you are trying to access a cohort please log out - and log back in. Sorry for the inconvenience.’ if the user is inactive for more in 15 minutes when trying to create/use existing cohort.

	Clinical Feature Panel is displayed properly and reacts to filters being added/removed quickly.

	The user must have text to add a comment.

	All columns in file list table will be transferred/displayed when exported as csv file.

April 14, 2016 v1.1 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.1]

Known Issues

	If user clicks create in new worksheet too many times within a few seconds will create duplicate worksheets

	Can add same gene twice if list has different names

	Apply filters button work when no filter is selected in edit cohorts page

	If user clicks create in new cohorts too many times within a few seconds will create duplicate cohorts

	User can add same filter to existing cohorts

	Clicking 150+ selected filters will create error page

	Create new Cohort left filters (#) does not re-populate as you select filters to match sample # in clinical feature panel

	Clinical Features Panel in create new cohort page will still display BRCA even if unselected

	Cancel button on Create new gene list page will send you to Data Source | Gene Favorites page

	Violin plot : User can add categorial value to y-axis

	Last updated section in existing workbooks panel does not update when changes are made to existing workbook

	If user edits an existing cohort the old filter(s) will be removed

Enhancements

	Tool tips added for disease code in create new cohort page

	Disease in longname in tool tips the first letter is capitalized

Bug Fixes

	The user detail page will now display the correct date

	The plot settings for a new worksheet are now working properly

	Plot settings for duplicate worksheets are now working properly

	The plot settings will now match the analysis type for existing worksheet plot

	The user can now edit existing cohort name

	Set Operations : Intersection working properly

	Set Operations : Union working properly

	Set Operations : Complement is now working properly

	User is now able to delete selected filters from selected filter panel in new cohort page using the blue X

	Editing an existing variable favorites list will display previously selected variables

	(Already in documentation) Green checkmark will appear for IGV link

	Update plot button will now work on a duplicate worksheet(can be added with 3)

	User can now delete all cohorts with the select all feature

	Fixed bugs with Data Type Create new cohort generating errors

	The user can now search for variable favorite with the miRNA feature

	The user can now search for a variable favorite through the clinical search feature

March 14, 2016 v1.0 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/2.0]

	When working with a worksheet two plots will be generated occasionally.

	Axis labels and tick values sometimes overlap and get cutoff.

	Page elongated when Cubby Hole plot generated and there are lots of values in the y axis.

December 23, 2015 v0.2 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/1.1]

	Treemap graphs in cohort details and cohort creation pages will not apply its own filters to itself. For example, if you select a study, the study treemap graph will not update.

	Cohort file list download not working.

December 3, 2015 v0.1 [https://github.com/isb-cgc/ISB-CGC-Webapp/releases/tag/1.0]

	First tagged release of the web-app

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Quick Links

The table below describes the types of functions that can be performed in ISB-CGC and provides links to documentation on how to do those functions.

	Function

	In web application

	With Command Line

	Work on the Google Cloud Platform

	
	Getting a trial account on the GCP sponsored by Google [https://console.developers.google.com/billing/freetrial]

	Getting a trial account on the GCP sponsored by ISB-CGC

	Specific information [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Gaining-Access-To-Controlled-Access-Data.html#accessing-controlled-data-from-a-gce-vm] on how to set up your GCP project for use with ISB-CGC

	
	Google Cloud SDK [https://cloud.google.com/sdk/]

	Google Cloud Shell [https://cloud.google.com/shell/docs/]

	Authenticating with Google

	Understand details of the data

	
	Access controlled data [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/Gaining-Access-To-Controlled-Access-Data.html]

	View File List in GUI

	View Sequences with IGV

	Google BigQuery Walkthrough

	Google BigQuery Console [https://console.cloud.google.com/bigquery?]

	
	For data in BigQuery

	BigQuery Command Line Tool [https://cloud.google.com/bigquery/bq-command-line-tool-quickstart]

	Visualize results from BigQuery [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_plot_BigQuery_results.ipynb]

	For data in Google Cloud Storage

	Google Cloud Storage JSON API [https://cloud.google.com/storage/docs/json_api/]

	Google Cloud Storage gsutil [https://cloud.google.com/storage/docs/gsutil]

	How to work with cloud storage notebook [https://nbviewer.jupyter.org/github/isb-cgc/Community-Notebooks/blob/master/Notebooks/How_to_work_with_cloud_storage.ipynb]

	Analyze ISB-CGC data

	
	Analyses with Bar Charts, Histograms, Scatter Plots, Violin Plots, Cubby Hole Plots and SeqPeek

	Google BigQuery Web UI and BigQuery UI Walkthrough [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]

	
	Community Notebooks [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowTos.html]

	ISB-CGC Endpoints

	Create cohorts of patients

	
	Create cohorts

	Cohorts set operations

	Create a cohort from visualization (background and tool image)

	Develop queries with Google BigQuery Web UI and/or ISB-CGC API v4 [https://api-dot-isb-cgc.appspot.com/v4/swagger/] before creating cohorts with command line tools

	
	Use GUI saved cohorts in ISB-CGC Endpoints

	BigQuery Command Line Tool [https://cloud.google.com/bigquery/bq-command-line-tool-quickstart], and/or BigQuery REST API [https://cloud.google.com/bigquery/bigquery-api-quickstart]

	Add your data to the cloud

	
	Uploading your low level data (e.g. Bam and VCF files) to Google Cloud Storage

	Upload high level summary data (such as Methylation, Gene Expression, microRNA, Protein Expression & Customized data) for plotting in the UI.

	
	Uploading your data to Google Cloud Storage [https://cloud.google.com/storage/docs/cloud-console#_using]

	Uploading your data to Google BigQuery [https://cloud.google.com/bigquery/loading-data-into-bigquery]

	Analyze your data with ISB-CGC data

	
	Plot your high level experimental data (such as Methylation, Gene Expression, microRNA, Protein Expression and Customized data) with other ISB-CGC data (e.g. TCGA).

	
	Community Notebooks [https://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/HowTos.html]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Frequently Asked Questions (FAQ)

ISB-CGC Accounts and Cloud Projects

Do I have to request an ISB-CGC account before I can try the web app?

No, you can just “sign in” to the Web App using your Google identity.

I want to be able to run big jobs using Google Compute Engine on the TCGA data hosted by the ISB-CGC. What should I do?

You will need to request a Google Cloud Platform (GCP) project. Please see How to Request Cloud Credits for more details
about requesting a project.

Can I use any email address as a Google identity?

Yes, you can. If your email address is not already linked to a Google account, you can create [https://accounts.google.com/signupwithoutgmail] a Google account with your current email address.
Please note, however that although these two accounts will then share the same name, they will still be two separate accounts, with two separate passwords, etc. (It is also possible that your institutional email address is already a Google account, if your institution uses Google Apps. This [https://support.google.com/accounts/answer/40560?hl=en&ref_topic=3382296] is how to find out).

How do I connect my Google Cloud Project to the ISB-CGC?

Your Google Cloud Project gives you access to all of the technologies that make
up the Google Cloud Platform. These technologies include BigQuery, Cloud Storage, Compute Engine, etc. The ISB-CGC makes use of a variety of these technologies to provide access to the TCGA data, as well as many other data sets. Please see the Google Cloud Project Setup and Data Access section in the Quick Start Guide.

The connection between your Google Cloud Project (whether it is an ISB-CGC sponsored and funded project
or your own personal project) and the ISB-CGC is your Google identity
(also referred to as your “user credentials”).

Access to all ISB-CGC hosted data is controlled using the Data Commons Framework Gen3 [https://dcf.gen3.org/] which defines the
permissions attached to each data set, bucket, or object.

What project information do I input on the Register a Google Cloud Project page?

You will need to input the Google Cloud Project ID which can be found on the Dashboard page of the Google Console under Project info.

[image: ../_images/project_info.PNG]

Why do I add the service account 907668440978-oskt05du3ao083cke14641u35deokgjj@developer.gserviceaccount.com to my Google Cloud Project?

This service account is needed in your Google Cloud Project IAM page for the ISB-CGC project to be able to automatically verify that all users of your Google Cloud Project have the same appropriate access rights to the protected data that has been requested for the project.

What service account do I use on the Register a Service Account page to be able to gain access to protected data?

On the Register a Service account page you are asked to input a service account ID. You need to go to the IAM and Admin page which can be found in your console [https://console.cloud.google.com/home/dashboard?] for your Google Cloud Project to find the correct service account. The service account you would like to use is named, “Compute Engine default service account”. This service account is the default option on the Register A Service Account page. Please DO NOT use the service account 144657163696-utjumdn9c03fof16ig7bjak44hfj53o6@developer.gserviceaccount.com (you will be prevented from using this account by our software and an error message will be sent indicating this).

Why can’t I reauthorize my Service Account on my Google Cloud Project?

Your service account may have had its permissions revoked (because, for example, the 7-day limit has been reached, or you have added a member to the GCP who is not authorized to use controlled data the service account is linked with or has not logged into the ISB-CGC UI and authenticated using their dbGaP credentials). If permissions were revoked because an unauthorized user was added to the project, the Google Cloud Project owner will be sent
an email specifying the Service Account, and Google Cloud Project which resulted in the access being revoked. If the user has not logged into the ISB-CGC Web App and/or has not authenticated, you will be given a red error message saying, “There was an error in processing your service account. Please try again.” when attempting to refresh using the refresh wheel. To see which new user hasn’t logged in or authenticated, please go to either the Register a Service Account page or the Adjust a Service Account page and see which user it is within the table for which the data set is not selected and there are X’s in the Registered and Has NIH Identity.

[image: ../_images/authorizedtable.PNG]
Ensure that the user has 1) Logged into the ISB-CGC web app and 2) Has registered their NIH Identity with their user interface identity.

To reauthorize the service account 1) Remedy the problem that resulted in access being denied, and 2) Select the “Adjust A Service Account” icon(plus sign) next to Current Access Expires.

Another reason could be if some users are marked as unable to access datasets they should have access to, make sure they have logged into the system and linked their eRA Commons/NIH Identity to their Google Identity.

Why would I get an Authorization Failed page on NIH iTrust when attempting to link my Google Account with my NIH identity?

[image: ../_images/authfailednihItrustpage.PNG]
You can get this page for two reasons: First, if you may have typed in your password incorrectly, please select the Click Here to continue link and try to log in again. Second, if you have typed your password correctly, it could be time to refresh your NIH identity password. Please reset your password by using this link here [https://public.era.nih.gov/commons] and try again. This should allow you to link your NIH Identity to the ISB-CGC web app.

What happens if I accidently delete the default service account from a Google Cloud Project?

If you accidently delete the default service account associated to the Google Cloud Project you are working in, you can no longer authorize the service account during instance creation, associate the service account to controlled access data, and many other functionalities will no longer work.

If you then try to add the service account back to the Google Cloud Project, this error occurs:

ERROR: (gcloud.compute.instances.create) Some requests did not succeed:
- The resource ‘xx…@project.gserviceaccount.com’ of type ‘serviceAccount’ was not found.

Unfortunately at this time, there is no direct way to recover the default service account.

One workaround to recreate the Google Compute Engine default service account is to disable and reenable Google Compute Engine API in your project. This will only work if you have no Google Compute Engine resources (e.g VMs, Disks, Snapshots etc) in your project; otherwise, you will get “Backend Provisioning Error” when you try to disable Compute Engine API.

Another solution would be creating a new project and redeploying your instances there.

Google has an internal feature request to prevent accidental deletion of default service accounts.

There is a Google forum discussion that can be found here [https://groups.google.com/forum/#!topic/gce-discussion/bQ_-qCWoUZw] with more details and explanation.

ISB-CGC Web Interface

I ran the same query in the Web App that I’ve run before, but the results were different. Why is that?

The Web App performs its data retrieval and counts on ISB-CGC Google BigQuery tables which are based on the latest GDC data release. So, it’s possible that a new GDC release
occurred since you last performed that query.

Why do I sometimes get a “Do you want to leave this site?” pop-up box when leaving a page or canceling a workflow edit?

This is a security feature when working with forms found in most web browsers; it lets you know that you may have made some changes which will be lost when you navigate away from the page. If you intend to cancel what you were doing, you can safely ignore it.

Which web browser is recommended when working with the site?

We recommend using Google Chrome browser. Currently a chart will display slightly off when working with workbooks on a FireFox browser.

Why did I get a 401 error on the IGV Browser?

You will see the 401 error only if your pop-up blocker is enabled for the ISB-CGC website. Please disable the pop-up blocker on the top right-hand side of the screen by selecting to always allow pop-ups from ISB-CGC.

[image: ../_images/401ErrorIGVBrowser.PNG]

Why does the web browser crash if too many IGV Browser tabs are opened at once?

The web browser may crash when too many IGV Browser tabs are open due to the memory intensive nature of loading bam files. When working with the IGV Browser, please be mindful of having multiple tabs of the IGV Browser open.

[image: ../_images/IGVBrowserCrash.png]

Does SeqPeek and CNVR plotting only work with TCGA data?

We currently have no data associated with CNVR or Seqpeek for TARGET or CCLE. Therefore, SeqPeek and CNVR will only work with TCGA data.

Data Access

Does all TCGA data require dbGaP authorization prior to access?

No, generally only the low-level sequence (DNA and RNA) and SNP-array data (CEL files) require
dbGaP authorization. All of the “high-level” molecular data, as well as the clinical data are
open-access and much of this has been made available in a convenient set of BigQuery tables.

Where can I find the TCGA data that ISB-CGC has made publicly available in BigQuery tables?

The BigQuery web interface can be accessed at https://console.cloud.google.com/bigquery. If you have not already added the ISB-CGC datasets to your BigQuery “view”, click on the blue arrow
next to your project name at the top of the left side-bar, select “Switch to Project”, then “Display Project…”,
and enter “isb-cgc” (without quotes) in the text box labeled “Project ID”. All ISB-CGC public BigQuery
datasets and tables will now be visible in the left side-bar of the BigQuery web interface.
Note that in order to use BigQuery, you need to be a member of a Google Cloud Project.

How can I apply for access to low-level DNA and RNA sequence data?

In order to access the TCGA or All other controlled-access data available, you will need to apply to dbGaP [https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login].
Please also review our section on Understanding Data Security.

I have dbGaP authorization. How do I provide this information to the ISB-CGC platform?

In order for us to verify your dbGaP authorization, you first need to associate your Google Identity
(used to sign-in to the Web App) with a valid NIH login (eg your eRA Commons ID). After you have
signed in, click on your avatar (next to your name in the upper-right corner)
and you will be taken to your account details page where you can
verify your dbGaP authorization. You will be redirected to the NIH iTrust login page and after you
successfully authenticate, you will be brought back to the ISB-CGC Web App. After you successfully
authenticate, we will verify that you also have dbGaP authorization for the TCGA controlled-access data and other programs you have dbGaP access to.

We also ask that you review our section on Understanding Data Security.

My professor has dbGaP authorization. Do I have to have my own authorization too?

Yes, your professor will need to add you as a “data downloader” to his/her dbGaP application so that you
have your own dbGaP authorization associated with your own eRA Commons ID.
(This video [https://www.youtube.com/watch?v=Yem3OH26kX4] explains how an authorized user of
controlled-access data can assign a downloader role to someone in his/her institution.)

I already authenticated using my eRA Commons ID but now I want to use a different Google identity to
access the ISB-CGC Web App. Can I reauthenticate using the same eRA Commons ID?

Yes, but you will first need to sign in using your previous Google identity and “unlink” your eRA Commons
ID from that one before you can link it with your new Google Identity. An eRA Commons ID cannot be
associated with more than one Google Identity within the ISB-CGC platform at any one time.

Can I authenticate to NIH programmatically?

No, the current NIH authentication flow requires
web-based authentication and must therefore be done from within the ISB-CGC Web App. Once you have
authenticated to NIH via the Web App, and your dbGaP authorization has been verified, the Google
identity associated with your account will have access to the controlled-data for 24 hours.

Data Content

I get a different number of samples in BigQuery than I do with the same query in the Web App. Why?

Older programs like TCGA have both legacy data (data from the original program) and harmonized data (data run through the Genomics Data Commons). The Web App primarily uses harmonized data whereas BigQuery contains both legacy and harmonized data. In addition, some cases and samples have been removed from the Web App if annotation suggests the data from those cases or samples are incorrect, misleading or from cases of uncertain origin. Most of these cases and samples are still in BigQuery and users are encouraged to check the annotations tables.

Python Users

I want to write Python scripts that access the TCGA data hosted by the ISB-CGC. Do you have some examples that can get me started?

Yes, of course! The best place to start is with our Community Notebooks or our repository in GitHub [https://github.com/isb-cgc/Community-Notebooks]. You can run any of these examples yourself. It includes an introduction explaining what Notebooks are, how to get started as a novice user, and how to run more advanced analyses once you are comfortable.

R Users

I want to use R and Bioconductor packages to work with the TCGA data. How can I do that?

You can run RStudio locally or deploy a dockerized version on a Google Compute Engine VM. You can
find some great examples to get you started in our Community Notebooks or our repository in Community Notebooks GitHub [https://github.com/isb-cgc/Community-Notebooks].

Regulome Explorer Users

Can I run Regulome Explorer Analyses using TCGA tables of heterogeneous data in BigQuery?

Yes, of course! A series of Python Notebooks have been created to replicate Regulome Explorer and includes detailed information on the statistical methods implemented. To get started, please visit our Regulome Explorer page in readthedocs or our Repository in Regulome Explorer GitHub [https://github.com/isb-cgc/Community-Notebooks/tree/master/RegulomeExplorer].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Contact Us

For general information about the ISB-CGC please contact us at feedback@isb-cgc.org.
We are especially keen on learning about your particular use-cases, and how we can
help you take advantage of the latest in cloud-computing technologies to answer your
research questions.

For feature requests or bug reports, please send e-mail to feedback@isb-cgc.org.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Index

Getting started with R and RStudio

Step #1: Installing R and RStudio

Basic Information

Working in R [https://cran.r-project.org/] is a great way to access the cloud pilot data. We can perform Big Queries,
statistically model data, and easily visualize the results. R programming
is easier and more robust then ever before.

Installation

RStudio is a freely available development environment that makes working
in R more intuitive. Always install (and update to) the most recent versions.

	First, we need to download and install R. Download and install R [https://cran.rstudio.com/].

	Next, we download and install RStudio. RStudio [https://www.rstudio.com/products/rstudio/download/].

Questions?

Let us know if you’re having trouble! We’re here to help.

Step #2: How to prepare for the workshop

There’s a few R libraries we need to install for the workshop. To do that,
start up RStudio, and click over to the “Console” window containing the
interactive R prompt. The window should be in the lower left corner.

Necessary:

Install devtools [https://cran.r-project.org/web/packages/devtools/index.html]:

install.packages("devtools")

Install bigrquery [https://cran.r-project.org/web/packages/bigrquery/index.html].:

install.packages("bigrquery")

Install httr [https://cran.r-project.org/web/packages/httr/index.html].:

install.packages("httr")

Install ISBCGCExamples [https://github.com/isb-cgc/examples-R].

library(devtools)
install_github("isb-cgc/examples-R", build_vignettes=TRUE)

To view and run the ISB-CGC R vignettes.:

help(package="ISBCGCExamples")

Strongly Recommended:

Install ggplot2 [https://cran.r-project.org/web/packages/ggplot2/index.html]:

install.packages("ggplot2")

There are vignettes for each TCGA data type, and more elaborate examples involving analyzing genomic data,
correlating gene expression and methylation, and correlating protein and mRNA levels.

The vignettes as R-markdown can be found in the examples-R/inst/doc directory, which can serve as examples of using builtin BigQuery functions like Pearson correlation,
or even how to implement more complex functions like Spearmans correlation. Queries can be simple character vectors, or standalone files.

Results are returned as data.frames using the bigrquery package to interact with the servers.
The SQL files used in the vignettes can be found at examples-R/inst/sql. These are parsed and dispatched with arguments using the DisplayAndDispatchQuery function,
found in the file of the same name in examples-R/R.

Additional Resources:

ISB-CGC documentation [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/index.html]

What’s Next?

Check out our github repo containing introductions to data types and ideas
for different analysis.

https://github.com/isb-cgc/examples-R

	Analysis with R

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

APIs

Programmatic access to ISB-CGC data and metadata is provided through ISB-CGC APIs built on Google’s OpenAPI Endpoints. A SwaggerUI interface is also available, to try out the APIs and view their documentation. User-generated data such as cohort definitions, and user functions such as registering GCP projects is also available through the ISB-CGC API Endpoints. Note that all user-generated Endpoints require identity credentials for use.

	ISB-CGC APIs

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Pre-Workshop Information

This information is currently intended only for attendees who have
signed up for the
workshops at NCI on May 24th and 25th [https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/nci-cancer-genomics-cloud-workshop].
After the workshops, all materials will be made available as part of the
ISB-CGC documentation here on readthedocs.

Please check back again before the day of the workshop!

Step #1: Basic Information and your own GCP project

Basic Information

Please send the following information to request@isb-cgc.org ASAP

	your Google identity (for example your gmail address)

	are you bringing a Mac or Windows laptop?

	do you have non-TCGA data that you want to begin analyzing during the workshop?

If you don’t already have a Google identity, you can
create one [https://accounts.google.com/SignUp?dsh=308321458437252901&continue=https%3A%2F%2Faccounts.google.com%2FManageAccount#FirstName=&LastName=].

Google Cloud Platform (GCP) project

Everyone should have their own GCP project set up before the day of the workshop.
We will also add everyone to a temporary “workshop” GCP project.

We’d like to encourage you to take advantage of the
free trial [https://cloud.google.com/free/] offered by Google.
If you have already used this one-time offer (or there is some other reason you cannot use it)
let us know and we will set you up with an
ISB-CGC provided (and funded) project. (We’ll also be happy to do that for
you after you use the $300 free trial.)

When you send us your Google identity, please let us know if you already have
your own GCP project.

Questions?

Feel free to ask any other questions you might have about the workshops or
give us additional information about your specific use-case or goals for
the workshop. The workshop will be your hands-on introduction to the ISB-CGC;
be assured that we will follow up with you after the workshops to provide
any additional support you will need.

Step #2: How to prepare for the workshop

Here are some ways that you can prepare for the workshops:

Strongly Recommended:
* install Google Chrome [https://www.google.com/chrome/browser/desktop/] on your laptop
* learn your way around the Google Cloud Console [https://console.cloud.google.com] – follow along with this 15 minute tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]
* enable the following APIs for your GCP project: BigQuery, Genomics, and Compute Engine – this should take less than 5 minutes [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]

Suggested:
* install the Cloud SDK [https://cloud.google.com/sdk/] on your laptop
* install R [https://cran.r-project.org/] and RStudio [https://www.rstudio.com/products/rstudio/download/] on your laptop, and follow these tips to get started

Additional Resources:
* A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]
* How to Enable APIs for your GCP Project [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]
* An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]
* An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]
* An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

Sign in to and explore the ISB-CGC Web App [https://isb-cgc.appspot.com/], peruse the ISB-CGC Documentation [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/] and our open-source code on GitHub [https://github.com/isb-cgc/]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Pre-Workshop Information

This information is currently intended only for attendees of one of our
two August 2016 workshops
(at ISB [https://shmulevich.systemsbiology.org/cancer-genomics-cloud-workshop/],
and at the UEF summer school [http://summerschool.uef.fi/sumsco-biomedical-data-science]).
After the workshops, all materials will be made available as part of the
ISB-CGC documentation here on readthedocs.

Important Information

	All workshop attendees should bring a personal laptop. (A few loaner-laptops may be available at the ISB workshop – please contact us ASAP if you might need one.)

	A Google identity (eg your gmail address) is required in order to sign in to the ISB-CGC Web App [https://isb-cgc.appspot.com/]. If you don’t already have a Google identity, you can create one [https://accounts.google.com/SignUp?dsh=308321458437252901&continue=https%3A%2F%2Faccounts.google.com%2FManageAccount#FirstName=&LastName=].

Google Cloud Platform (GCP) project

	All workshop attendees will be provided with temporary credentials to a GCP project, but if you already have access to a GCP project you will be able to follow along using that project.

	We encourage everyone who has not already taken advantage of the free trial [https://cloud.google.com/free/] offered by Google to do so. This offer provides you with your own personal GCP project and $300 in “cloud credits” to be used over the course of one year. (You will need to provide a credit card, but no charges will be billed to it without your consent.)

	Please note that some of the workshop examples will require that you have “Owner” privileges to a GCP project. The temporary credentials mentioned above will only include “Editor” privileges.

Questions?

	Feel free to email us (workshop@isb-cgc.org) with any questions you might have about the workshop or to give us additional information about your specific use-cases and goals for the workshop. The workshop will be your hands-on introduction to the ISB-CGC.

Preparing for the Workshop

Here are some ways that you can prepare for the workshop:

Strongly Recommended:

	install Google Chrome [https://www.google.com/chrome/browser/desktop/] on your laptop

	learn your way around the Google Cloud Console [https://console.cloud.google.com] – follow along with this 15 minute tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	if you have your own GCP project, enable the following APIs: BigQuery, Genomics, and Compute Engine – this should take less than 5 minutes [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]

Suggested:

	install the Cloud SDK [https://cloud.google.com/sdk/] on your laptop

	install R [https://cran.r-project.org/] and RStudio [https://www.rstudio.com/products/rstudio/download/] on your laptop, and follow these tips to get started

	sign in to and explore the ISB-CGC Web App [https://isb-cgc.appspot.com/], peruse the ISB-CGC Documentation [http://isb-cancer-genomics-cloud.readthedocs.org/en/latest/] and our open-source code on GitHub [https://github.com/isb-cgc/]

Additional Resources:

	ISB-CGC / Google Cloud materials

	A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	How to Enable APIs for your GCP Project [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf]

	An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]

	An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]

	An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

	Google Genomics

	Overview [https://cloud.google.com/genomics/]

	github repositories [https://github.com/googlegenomics]

	Google Genomics Cookbook [https://googlegenomics.readthedocs.io/en/latest/] with sections on:

	finding published data sources [https://googlegenomics.readthedocs.io/en/latest/use_cases/discover_public_data/index.html]

	data-processing [https://googlegenomics.readthedocs.io/en/latest/sections/process_data.html] on the Google Cloud

	data-analysis [https://googlegenomics.readthedocs.io/en/latest/sections/analyze_data.html] on the Google Cloud

	accessing data using IGV [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html], BioConductor [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/bioconductor.html], R [https://googlegenomics.readthedocs.io/en/latest/api-client-r/index.html], Python [https://googlegenomics.readthedocs.io/en/latest/use_cases/getting-started-with-the-api/python.html] and more!

	DREAM challenges powered by Sage Bionetworks [http://sagebase.org/]

	Overview [http://dreamchallenges.org/]

	Design and Methodology [http://dreamchallenges.org/designmethodology/]

	FAQ [http://dreamchallenges.org/faqs/]

	Somatic Mutation Calling Challenge: RNA [https://www.synapse.org/#!Synapse:syn2813589/wiki/401435] – Registration is now open!

	Publications [http://dreamchallenges.org/publications/] from past challenges

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

ISB-CGC Workshop

This information is currently intended for attendees of the August 2nd workshop at ISB.
After the workshops, all materials will be made available as part of the
ISB-CGC documentation here on readthedocs.

If you want to have another look at the Pre-Workshop information we sent you, here it is.

Before we get started …

As soon as you’ve found a seat and opened up your laptop, please do the following:

	check your email for the latest workshop information, including links to materials as well as a link to a WebEx session – you do not need to join the WebEx, but you might find it a useful way to see the what is being projected directly on your laptop;

	sign into your Chrome browser using the Google identity you provided to us, or the “temporary” Google identity that was given to you this morning;

	go to the Google Cloud Platform Console [https://console.cloud.google.com]

	you should not have to sign in again, but if you are asked to, use the same Google identity again

	in the top blue bar, towards the right, you should see a project name, eg “ISB-CGC Workshop” – if you are a member of two or more projects, then you will be able to select a project using that pulldown;

	if you have any questions or are unable to access the Google Cloud Console, please raise your hand!

[image: ../_images/console_top.png]

	if you do have your own GCP project, now would be a good time to make sure that you have certain APIs enabled. (If you don’t know how, take a look at this tutorial [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/enabling_new_APIs.pdf].) Specifically, you will need these APIs enabled (some may already be enabled by default):

	Google Compute Engine

	Google Genomics

	Google Cloud Logging

	Google Cloud Pub/Sub

	find out what access-privileges you have in your GCP project: go to the IAM & Admin [https://console.cloud.google.com/iam-admin/iam] section of the Cloud Console, look for your identity (eg gmail address) and look at which Role(s) are listed to the right;

	just for fun, if you have time: in a separate browser tab, open up the BigQuery Web UI [https://bigquery.cloud.google.com]

	click on the red COMPOSE QUERY button in the upper left corner, and then cut and paste the simple SQL query below into the New Query box and then click on the red RUN QUERY button

	try out the Format Query button, and the Explanation button above the Results

	try modifying the query to make it invalid and then click on the red exclamation mark (below the query box on the far right)

	you can find additional information about accessing and working with the ISB-CGC BigQuery tables on several other pages here on readthedocs – try typing “BigQuery” into the “Quick search” box over in the left panel!

	at the bottom of this page are links to several quickstart tutorials – one of them is all about BigQuery

SELECT COUNT(*) AS n, project_short_name , gender
FROM [isb-cgc:TCGA_bioclin_v0.Clinical]
GROUP BY gender , project_short_name
ORDER BY n DESC, project_short_name , gender

Workshop Outline & Links

ISB Cancer Genomics Cloud (ISB-CGC)

	Introductions, Overview etc

	Introduction to the ISB-CGC Platform [https://github.com/isb-cgc/readthedocs/raw/master/docs/include/workshop-intro-Aug2016.pdf]

	A Quick Tour of the Google Cloud Console [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Console.pdf]

	Copy/Paste Cheat Sheet [https://docs.google.com/document/d/1LYSRlmm2RwpuOpnpqjmRxHhZ6kU18grz3o5IPq_OhJ8/edit?usp=sharing] (you might find this useful later on in the day)

	ISB-CGC Web App & API Endpoints

	Web-App Tutorial (walkthrough [https://docs.google.com/document/d/1z3XWf_cA-IyqRwmaZofZb5FCWPaW3KU8trXsrafm46c/edit?usp=sharing]) (doc)

	API Endpoints demo (doc)

	ISB-CGC Open-Access BigQuery Tables

	Overview of TCGA data (doc)

	BigQuery SQL Tutorial

	Analysis using R (github [https://github.com/isb-cgc/examples-R])

	Lunch and Open Q&A Session

	Computing in the Cloud

	Useful References: Cloud SDK cheat sheet [https://docs.google.com/document/d/1ZZTsjHzQClA0gZyOhlBav-I4XQhW81Yx980qvgy_jr8/edit?usp=sharing]

	Introduction to GCE (Google Compute Engine) (slides [https://docs.google.com/presentation/d/13ORIDboGC27uCMf_C9w9WIi0cK9tGO7cqgp6vwA2miE/edit?usp=sharing])

	Google Genomics “Pipelines” Service (slides [https://docs.google.com/presentation/d/1_rRvlhNuA0_SQuO2SOru7ttjPvzlygW3ALILcQ-JEjg/edit?usp=sharing])

	ISB-CGC Pipelines Framework (slides [https://docs.google.com/presentation/d/1akqoZImzei2D47O8rcWrcEzsWPYxUtL-2-eUdiBzzgo/edit?usp=sharing], github [https://github.com/isb-cgc/ISB-CGC-pipelines])

DREAM Challenge: Somatic Mutation Challenge – RNA

	DREAM challenges powered by Sage Bionetworks [http://sagebase.org/]

	Presentation [https://docs.google.com/presentation/d/1p5W7ZDdahBYKBOcHu1wTeDClBbq7baDJs6EdMscupkc/edit?usp=sharing]

	Somatic Mutation Calling Challenge: RNA [https://www.synapse.org/#!Synapse:syn2813589/wiki/401435] – Registration is now open!

Google Genomics

	Overview [https://cloud.google.com/genomics/]

	github repositories [https://github.com/googlegenomics]

	Google Genomics Cookbook [https://googlegenomics.readthedocs.io/en/latest/] with sections on:

	finding published data sources [https://googlegenomics.readthedocs.io/en/latest/use_cases/discover_public_data/index.html]

	data-processing [https://googlegenomics.readthedocs.io/en/latest/sections/process_data.html] on the Google Cloud

	data-analysis [https://googlegenomics.readthedocs.io/en/latest/sections/analyze_data.html] on the Google Cloud

	accessing data using IGV [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/igv.html], BioConductor [https://googlegenomics.readthedocs.io/en/latest/use_cases/browse_genomic_data/bioconductor.html], R [https://googlegenomics.readthedocs.io/en/latest/api-client-r/index.html], Python [https://googlegenomics.readthedocs.io/en/latest/use_cases/getting-started-with-the-api/python.html] and more!

Quickstart Tutorials and Other Useful Links

	An Introduction to BigQuery [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf]

	An Introduction to Cloud Datalab [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Datalab.pdf]

	An Introduction to Cloud Shell [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_Cloud_Shell.pdf]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Other Genomics BigQuery Data Available on Google

Google and others have made additional datasets available in BigQuery. These can be used in joins with the ISB-CGC datasets. The current list can be found here [https://googlegenomics.readthedocs.org/en/latest/use_cases/discover_public_data/index.html].

It is possible that not all the datasets provided on this page have BigQuery data. You can find that out by opening up that link for each dataset and seeing if there is a section called “Google BigQuery Dataset ID(s)”. If there is, you can make these available through your Google console by the same process as you did for the ISB-CGC datasets above or by clicking on the link for that dataset.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

CGCI Data Set

About the CGCI

The Cancer Genome Characterization Initiative (CGCI) supports research to comprehensively catalog the genomic alterations in adult and pediatric cancers. The research community can use CGCI data to gain insight into the underlying mechanisms of these cancers and identify potential therapeutic targets.

For more information, please visit the official
CGCI website [https://ocg.cancer.gov/programs/cgci].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Creating and Managing Persistent Disks on VMs

As described in the previous section, you can specify the boot disk when launching a VM from
the Console and from the command-line. There are times when you may want to create and attach
additional disks to an instance. There are three main steps in this process: you must first
create the disk, then you must attach it to the instance, and finally you must format it.
When you are finished, you may want to detach the disk and when you are done with it, you
will want to delete it. We will describe each of these steps in a bit more detail below.
You may also want to see the Google documentation on
Adding Persistent Disks [https://cloud.google.com/compute/docs/disks/persistent-disks].

Create a Persistent Disk

The gcloud command for creating a persistent disk is gcloud compute disks create.
The most common options you’ll probably use are --size, --type, and --zone
(see this [https://cloud.google.com/sdk/gcloud/reference/compute/disks/create] page for
more details). For example:

gcloud compute disks create disk-1 --size 500GB

will create a 500 GB disk named “disk-1”, using default settings (eg the type will be pd-standard).

Attach a Persistent Disk

The gcloud command to attach a newly created disk to a previously created instance looks like this:

gcloud compute instances attach-disk –disk disk-1 –device-name my-instance

Note that this command is part of the gcloud compute instances group rather than the
gcloud compute disks group. Details about additional options can be found in the
documentation [https://cloud.google.com/sdk/gcloud/reference/compute/instances/attach-disk].
For example the default mode is rw (read-write), but you can also specify that a
disk be attached ro (read-only).

Format a Persistent Disk

In order to format a disk that you’ve attached to an instance, you need to first log on to that instance:

gcloud compute ssh my-instance

For complete details, please refer to the Google documentation on
formatting [https://cloud.google.com/compute/docs/disks/persistent-disks#formatting]
and mounting non-root persistent disks;
but there are two main steps: first you must format the disk using the mkfs tool
(note that this will delete any existing data on the disk), and second you must use
the mount tool to mount the disk at a specified mount-point:

sudo mkfs.ext4 -F /dev/disk/by-id/disk-1
sudo mkdir /mnt/pd1
sudo mount -o discard,defaults /dev/disk/by-id/disk-1 /mnt/pd1

Detach a Persistent Disk

Detaching a disk is a two step process: first you unmount the disk (using the umount command,
from the instance to which it is attached), and then (after logging out from that instance)
you use the gcloud tool:

$sudo umount /dev/disk/by-id/disk-1
$exit

gcloud compute instances detach-disk my-instance --disk disk-1

Delete a Persistent Disk

Note that a boot disk will be deleted if you delete the instance that it is attached to (as long
as the auto-delete property for the disk was set to “yes” (the default) when it was created). In all
other cases, you will need to
delete [https://cloud.google.com/sdk/gcloud/reference/compute/disks/delete]
the disk manually using the gcloud compute disks delete
command. Note that disks can be deleted only if they are not being used by any VM instances.

You can also see and manage persistent disks from the Console on the Compute Engine > Disks page.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Setting up your GCP project

This setup guide assumes that you are already a member of a GCP project with either
“Owner” or “Editor” rights.

Google Cloud Console

If you are new to the Google Cloud, it is a good idea to become familiar with the
Cloud Console [https://console.cloud.google.com] (which we will
generally refer to simply as the Console). You can get help from within the Console
by clicking on the Help (question mark) icon near the upper right-hand corner.
The Console provides a convenient web UI for managing resources within your cloud project,
and can be useful for obtaining a quick, high-level snapshot of the state of your project.
The “Home” page will list, for example, the number of buckets you have created in Cloud
Storage, the number of datasets in BigQuery, and the number of VMs you have running under
App Engine or Compute Engine.
It also shows the charges incurred by this project so far this month.

Enable the Compute Engine API

The Compute Engine API is probably enabled by default on your GCP project, but you
can verify this through the Console: click on the menu icon in the upper left-hand corner, and then select the APIs & Services.
On the APIs & Services Dashboard, there will be a list of APIs.

Select the “Compute Engine API” link which should be at the very top of the list of APIs. Once you are on the
“Compute Engine API” page, you should either see a button with the words “Enable API” or “Disable API”.
If the button says Enable, click on it. This process will take a minute or two,
after which you will be prompted to “Go to Credentials”. You should not need to create
new credentials at this time – you will typically be using
Application Default Credentials [https://developers.google.com/identity/protocols/application-default-credentials?hl=en_US].
(This blog post [http://googlecloudplatform.blogspot.com/2015/07/Easier-Auth-for-Google-Cloud-APIs-Introducing-the-Application-Default-Credentials-feature.html]
introducing Application Default Credentials may also be helpful.)
The proper use of credentials is frequently one of the most complicated
aspects of interacting with the Google Cloud Platform. If you are having problems, please
let us know.

You may also find the official Compute Engine
Getting Started Guide [https://cloud.google.com/compute/docs/quickstart] helpful.

Google Cloud SDK

Depending on how you choose to interact with the Google Cloud Platform, you may want
to install the Google Cloud SDK [https://cloud.google.com/sdk/] on your local workstation.
The Google Cloud SDK is a set of command-line interface (CLI) tools
that you can use to manage resources and applications hosted on GCP.
(Note that components of the the SDK are updated quite frequently. You will be notified
when updates are available anytime you use one of the SDK tools. The command will still run,
but you will be notified that
“Updates are available for some Cloud SDK components” and you will be given instructions on how to
update your local copy of the SDK.)

Confirm that you have installed the SDK and have access to it by typing gcloud --version
at the command line of your own linux workstation or from the Cloud Shell (for more details
about the Cloud Shell, see the next section). You should see something like this:

Google Cloud SDK 98.0.0

bq 2.0.18
bq-nix 2.0.18
core 2016.02.22
core-nix 2016.02.05
gcloud
gsutil 4.16
gsutil-nix 4.15

Google Cloud Shell

Google Cloud Shell [https://cloud.google.com/shell/docs/] provides you with command-line
access to computing resources hosted on GCP, available from the Console. Cloud Shell provides
you with a temporary VM running a Debian-based Linux OS, with 5 GB of persistent disk storage
per user, and the Google Cloud SDK and other tools pre-installed.

From the Console, you will find the icon for the Cloud Shell in the top-most blue bar, near
the right-hand corner. Hovering over the icon will display “Activate Cloud Shell”. If you
click on that icon, it will take a minute or two for your VM
to be provisioned, after which you will see a prompt saying “Welcome to Cloud Shell” in the
new window that has appeared at the bottom of your Console page. You can “pop” that
window out of your browser page by clicking on the “Open in new window” icon in the upper
right-hand corner of the shell window.

Authenticate with Google

Regardless of how you choose to interact with the Google Cloud, you will need to authenticate
yourself. How this authentication takes place will depend on “where” you are. If you
have signed into Chrome using your Google identity and you then go to the Console, you will
already have been authenticated. If you are at the Linux prompt of the Cloud Shell, you
have also already been authenticated because that Shell (and that VM) were launched for
you from your Console. If you are at the Linux prompt of your local workstation, you will
need to authenticate using the gcloud command line utility.

There are two approaches:

	gcloud init [https://cloud.google.com/sdk/gcloud/reference/init] launches an interactive Getting Started workflow for gcloud;

	gcloud auth login [https://cloud.google.com/sdk/gcloud/reference/auth/login] obtains access credentials for your user account via a web-based authorization flow.

These approaches may ask you to cut-and-paste a long URL into a browser, sign in using your Google
credentials, click “Allow” to allow Google to access certain information about you, and may also
ask that you cut and paste an authorization token from your browser back into the Linux shell.

Once you have authenticated, you can see information about your current configuration by
typing gcloud config list. You can set additional properties using the gcloud config set
command. The most common properties you are likely to want to verify
(list [https://cloud.google.com/sdk/gcloud/reference/config/list]), or
set [https://cloud.google.com/sdk/gcloud/reference/config/set] explicitly are:

	account

	project

	compute/region

	compute/zone

	container/cluster

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Running the NCI-GDC DNA-Seq workflow

In this section,
we will guide you through the steps to run the NCI-GDC’s DNA-Seq harmonization workflow
on Google Compute Engine. This workflow is available on github
here [https://github.com/NCI-GDC/gdc-dnaseq-cwl].
The instructions here are based on the NCI-GDC’s
README [https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/README.md]
and have been customized to run on GCE.

1. Create a GCE VM with Disk

From the Cloud Console > Compute Engine > VM instances
page [https://console.cloud.google.com/compute/instances]
click on [+] CREATE INSTANCE, and:

	set Name (eg cwl-test-1)

	set Zone (eg us-central1-c)

	set Machine type (eg 4 vCPUs with 15 GB memory)

	Change the boot disk to Ubuntu 14.04 LTS with 10 GB standard persistent disk (note that the boot disk will be named the same as the VM, ie cwl-test-1)

	leave the Identity and API access box as is (with “Compute Engine default service account” and “Allow default access” selected)

	expand the “Management, disk, networking, SSH keys section”:

	select the Disks tab

	click on + Add item

	in the Name pull-down, select “Create disk”: a “Create a disk” panel will open:

	set Name (eg cwl-disk-1) – do not use the same name as the VM!

	set Source type to “None (blank disk)”

	set Size (eg 500 GB)

	leave default Encryption (which is “Automatic (recommended)”)

	click on the blue Create button – this will create the disk only at this time

	before clicking on the Create button (for the VM), click on the bottom line where it says “Equivalent REST or command line” – you can save this command-line and re-use it later to create the same VM from the command-line rather than repeating this interactive process; it is also a nice record of exactly how the VM was created

	now click on the Create button – you will see the VM “spinning up” on the VM instances page

Example command-line equivalents to create the disk and the VM (you will need to substitute in your own
Google Cloud Platform (GCP) project:

$ gcloud compute --project <YOUR-PROJECT-ID> disks create "cwl-disk-1" --size "500" --zone "us-central1-c" --type "pd-standard"

$ gcloud compute --project <YOUR-PROJECT-ID> instances create "cwl-test-1" --zone "us-central1-c" --machine-type "n1-standard-4" --network "default" --maintenance-policy "MIGRATE" --scopes default="https://www.googleapis.com/auth/devstorage.read_only","https://www.googleapis.com/auth/logging.write","https://www.googleapis.com/auth/monitoring.write","https://www.googleapis.com/auth/servicecontrol","https://www.googleapis.com/auth/service.management.readonly","https://www.googleapis.com/auth/trace.append" --disk "name=cwl-disk-1,device-name=cwl-disk-1,mode=rw,boot=no" --image "/ubuntu-os-cloud/ubuntu-1404-trusty-v20161205" --boot-disk-size "10" --boot-disk-type "pd-standard" --boot-disk-device-name "cwl-test-1"

2. Configure the VM

Now you can ssh to your VM from any command-line where you have the cloud SDK installed.
If you don’t have the cloud SDK installed on your local machine, you can use the
Cloud Shell [https://cloud.google.com/shell/docs/] directly from your browser in the
Cloud Console [https://console.cloud.google.com].

$ gcloud compute --project <YOUR-PROJECT-ID> ssh --zone "us-central1-c" "cwl-test-1"

2.1 Install Packages

Use the following commands to install the necessary packages:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

$ echo "deb https://apt.dockerproject.org/repo ubuntu-trusty main" | sudo tee /etc/apt/sources.list.d/docker.list

$ sudo aptitude update

$ sudo aptitude install apt-transport-https ca-certificates docker-engine htop libffi-dev libssl-dev nodejs python-dev virtualenvwrapper

After this last command, you will need to respond “Yes” to install the new packages.

2.2 Format and Mount the Disk

You can see the disks that are attached to your VM by using the following command:

$ ls /dev/disk/by-id

which should respond with something like:

google-cwl-disk-1 google-cwl-test-1-part1 scsi-0Google_PersistentDisk_cwl-test-1
google-cwl-test-1 scsi-0Google_PersistentDisk_cwl-disk-1 scsi-0Google_PersistentDisk_cwl-test-1-part1

The first disk listed above (google-cwl-disk-1) is the additional disk that was crated, while the
second one (google-cwl-test-1) is the boot disk, with the same name as the VM. The following
commands differ slightly from those specified in the NCI-GDC README but the result will be the same:

$ sudo mkfs.ext4 -F -E lazy_itable_init=0,lazy_journal_init=0,discard /dev/disk/by-id/google-cwl-disk-1
$ sudo mkdir -p /mnt/SCRATCH
$ sudo mount -o discard,defaults /dev/disk/by-id/google-cwl-disk-1 /mnt/SCRATCH
$ sudo chmod 777 /mnt/SCRATCH

You can now verify that the disk has been properly mounted using the df -h command:

$ df -h

File system Size Used Avail Use% Mounted on
/dev/sdb 493G 70M 467G 1% /mnt/SCRATCH

and as you can see, close to 500G of space is available mounted as /mnt/SCRATCH.

2.3 Prepare Docker and CWL

These next sets of commands will get you ready to run docker on this VM. You will need to
log out and log back in a couple of times to force certain changes to take effect.

$ mkdir /mnt/SCRATCH/docker
$ sudo bash -c 'echo DOCKER_OPTS=\"-g /mnt/SCRATCH/docker/\" >> /etc/default/docker'
$ sudo gpasswd -a ${USER} docker
$ sudo service docker restart
$ exit

The last command will log you out of your VM, so you will need to log back in using the same
gcloud ssh command you used before. Once you’re back on the VM:

$ echo "source /usr/share/virtualenvwrapper/virtualenvwrapper.sh" >> ~/.bashrc
$ exit

Sign back in again, and then create a “virtualenv” called “cwl”. This will change your
command-line prompt to indicate that you are in a new environment:

$ mkvirtualenv --python /usr/bin/python2 cwl
(cwl) $

A few more install commands and you’ll be ready to go:

(cwl)$ pip install --upgrade pip
(cwl)$ pip install 'requests[security]' --no-cache-dir
(cwl)$ wget https://github.com/NCI-GDC/cwltool/archive/1.0_gdc_g.tar.gz
(cwl)$ pip install 1.0_gdc_g.tar.gz --no-cache-dir

3. Run the DNA-Seq workflow

3.1 Clone the NCI-GDC github repo

You should now be in your home directory, in the (cwl) virtualenv. Clone the NCI-GDC dna-seq-cwl repo:

(cwl)$ git clone https://github.com/NCI-GDC/gdc-dnaseq-cwl.git

Now you will have a subdirectory called gdc-dnaseq-cwl in your home directory, containing
the NCI-GDC DNA-Seq harmonization workflow. The main workflow is in the CWL file
~/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl.

3.2 Load Reference and Input Data Files

The DNA-Seq workflow requires some reference data files that can be obtained from the NCI-GDC.
These include the dbsnp vcf (3 GB), the reference genome (835 MB), and the bwa indexed genome (3.2 GB).
(Uploading these to your VM disk should take 5-10 minutes.)

(cwl)$ mkdir /mnt/SCRATCH/hg38_reference
(cwl)$ cd /mnt/SCRATCH/hg38_reference
(cwl)$ wget https://gdc-api.nci.nih.gov/data/4ba1c087-ec80-47c4-a9d5-e9bb9933fef4 -O dbsnp_144.hg38.vcf.gz
(cwl)$ wget https://gdc-api.nci.nih.gov/data/62f23fad-0f24-43fb-8844-990d531947cf
(cwl)$ tar xvf 62f23fad-0f24-43fb-8844-990d531947cf
(cwl)$ wget https://gdc-api.nci.nih.gov/data/964cbdac-1043-4fae-b068-c3a65d992f6b
(cwl)$ tar xvf 964cbdac-1043-4fae-b068-c3a65d992f6b

Finally, let’s copy a small example BAM file (300 MB) from the 1000G repository:

(cwl)$ cd /mnt/SCRATCH
(cwl)$ wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/NA12878/alignment/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.bam

At this point you could also obtain a bam file either from the NCI-GDC or from one of the
ISB-CGC Cloud Storage buckets.

3.3 Run DNA-Seq CWL workflow

Now we’re ready to run the workflow using the CWL-runner cwltool. The input file that we just copied
to our VM disk is in /mnt/SCRATCH/alignment/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.bam.
Let’s create a sub-directory for the processed results:

(cwl)$ mkdir /mnt/SCRATCH/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211
(cwl)$ cd /mnt/SCRATCH/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211
(cwl)$ mkdir tmp cache
(cwl)$ nohup cwltool --debug --tmpdir-prefix tmp/ --cachedir cache/ \
 ~/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl \
 ~/gdc-dnaseq-cwl/workflows/dnaseq/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.json &

While that is running, you can go back to the Cloud Console, to the Compute Engine > VM instances
page, and click on the name of this VM. This will take you to a page describing this specific VM,
and you can see a trace of CPU utilization, and other metrics.

Let’s also take a closer look at the cwltool command used above.
You can find more details at the
cwltool github repo [https://github.com/common-workflow-language/cwltool]
and at commonwl.org [http://www.commonwl.org/v1.0/CommandLineTool.html].
The basic form of the cwltool command is:

$ cwltool [tool-or-workflow-description] [input-job-settings]

Looking at the way cwltool was invoked above, we see that the tool-or-workflow-description
is in ~/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl and the input-job-settings
are in ~/gdc-dnaseq-cwl/workflows/dnaseq/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.json.
Let’s have a closer look at those, starting with the smaller input-job-settings JSON document.
It defines three objects, each of which is of class “File”, with a specified “path”, eg:

"bam_path": {
 "class": "File",
 "path": "/mnt/SCRATCH/NA12878.chrom20.ILLUMINA.bwa.CEU.low_coverage.20121211.bam"
}

and it also specifies a “thread_count” value (8), and a “uuid”. You can see these inputs
defined near the top of the CWL document
(transform.cwl [https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/workflows/dnaseq/transform.cwl]).

3.4 Run-time and Compute-costs

This sample task takes about 2 hours to run. The costs associated with running this task are:
2 hours of GCE VM time plus 2 hours of persistent disk time
(GCE pricing details [https://cloud.google.com/compute/pricing]),
which comes to approximately $0.400 for the VM and $0.056 for the persistent disks,
for a total of $0.456.
(The n1-standard-4 VM chosen above costs $0.200 per hour, and the disk costs,
at $0.040 per GB per month for standard provisioned space, were computed as
510 GB x $0.040 per GB per month x 2 hours / 730 hours per month.)

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

The cwl_runner “helper” script

The cwl_runner script can be found on github in the googlegenomics/pipelines-api-examples repository, in the
cwl_runner [https://github.com/googlegenomics/pipelines-api-examples/tree/master/cwl_runner] folder.
You may want to refer to the
README [https://github.com/googlegenomics/pipelines-api-examples/blob/master/cwl_runner/README.md]
file in the github repo, we will also provide an overview and summary of what
this script does below, with some additional details that you may find useful.

	The basic prerequisites to be able to run this example are:

	
	you have the necessary privileges to launch a VM in a Google Cloud Project (GCP) project

	you must have an existing Google Cloud Storage (GCS) bucket

	you have the Cloud SDK installed

	There are three scripts in the github repo:

	
	cwl_runner.sh is the main bash script which takes care of most of the steps described in this tutorial [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/progapi/CWL_intro.html];

	cwl_startup.sh is the VM startup script which will automatically be run as soon as the VM spins up;

	cwl_shutdown.sh is the VM shutdown script which takes care of final steps such as copying stdout and stderr to GCS;

The main script,
cwl_runner.sh [https://raw.githubusercontent.com/googlegenomics/pipelines-api-examples/master/cwl_runner/cwl_runner.sh],
is the only one that you will invoke directly. It has several different options (which you can learn
more about by using the --help option), but the only required ones are:

	--workflow-file PATH: the absolute path to the CWL workflow document;

	--settings-file PATH: the absolute path to the JSON settings file;

	--output GCS_PATH: the output location in GCS where all outputs and logs will be copied after the workflow completes.

The script then invokes two gcloud compute commands (gcloud is part of the
cloud SDK [https://cloud.google.com/sdk/]:

	gcloud compute disks create: to create a persistent disk in the (optionally user-specified) zone, of (optionally user-specified) size;

	gcloud compute instances create: to create a virtual machine (VM), in the same zone as the disk, with the previously created disk attached, with the (optionally user-specified) machine type.

If the user specifies, the VM can be a
preemptible [https://cloud.google.com/compute/docs/instances/preemptible]
VM, which can be a good way to minimize compute costs, under the right circumstances.

The other information that the VM needs is passed in as
metadata [https://cloud.google.com/compute/docs/storing-retrieving-metadata].
Metadata is stored as key:value pairs. There is a default set of metadata
entries that every VM has access to, and
custom metadata [https://cloud.google.com/compute/docs/storing-retrieving-metadata#custom]
can also be set when a VM is created. This metadata will be available to the VM from
the metadata server [https://cloud.google.com/compute/docs/storing-retrieving-metadata#querying].

	The following metadata keys are specified by the cwl_runner script and will be available to the VM:

	
	startup-script-url

	shutdown-script-url

	operation-id

	workflow-file

	settings-file

	input

	input-recursive

	output

	runner

	status-file

	keep-alive

The cwl_runner script invoked by the user will create a random OPERATION-ID and
write three script files to the specified output location in GCS:

	cwl_runner-<OPERATION-ID>.sh

	cwl_startup-<OPERATION-ID>.sh

	cwl_shutdown-<OPERATION-ID>.sh

and will run the gcloud compute disks create command, followed by the gcloud compute instances create command.

In this case, the “startup” script will take care of pretty much everything we want this
particular VM to do:

	local bash variables are set based by retrieving the instance metadata from the metadata server

	the disk is mounted and formatted

	folders are created for workflow inputs and outputs

	input files are copied from GCS to local disk

	the workflow and settings files are copied from GCS to local disk

	the executor (cwltool) is invoked to run the workflow

	outputs are copied from local disk out to GCS

	the VM is shut down (using the command gcloud compute instances delete) unless the --keep-alive option was set

Following the example provided on github, you can invoke cwl_runner from the command-line (anywhere where you
have the Cloud SDK installed, with your GCS bucket and optional folder name instead of MY-BUCKET/my-work-folder below):

./cwl_runner.sh \
 --workflow-file gs://genomics-public-data/cwl-examples/gdc-dnaseq-cwl/workflows/dnaseq/transform.cwl \
 --settings-file gs://genomics-public-data/cwl-examples/gdc-dnaseq-cwl/input/gdc-dnaseq-input.json \
 --input-recursive gs://genomics-public-data/cwl-examples/gdc-dnaseq-cwl \
 --output gs://MY-BUCKET/my-work-folder \
 --machine-type n1-standard-4

	In this example, the JSON settings file specifies 5 items:

	
	bam_path (a small ~300MB low-coverage BAM for chromosome 20 only from the 1000G project)

	reference_fasta_path (the GRCh38 reference FASTA file from the GDC Reference Files [https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files])

	db_snp_path

	thread_count

	uuid

For more details on machine-types, please see the Google documentation on
predefined machine types [https://cloud.google.com/compute/docs/machine-types#predefined_machine_types]
and if you find that none of those quite fit your requirements you
may be interested in using one of the available
custom machine types [https://cloud.google.com/compute/docs/machine-types#custom_machine_types].

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

The Common Workflow Language (CWL)

The Common Workflow Language [http://www.commonwl.org/] (CWL) is emerging as a standard
for defining and sharing bioinformatic workflows, and the
NCI-GDC [https://gdc.cancer.gov/] is planning to release all of its
standardized workflows in this format.

In the sections below, we present a tutorial on running a sample NCI-GDC workflow with
step-by-step instructions to run it on a sample input BAM file using a Google Compute Engine
(GCE) VM. The second section describes how to use a convenient “helper-script”
called cwl_runner (available on github)
which wraps many of the individual steps required to create a GCE disk, spin up
a GCE VM, mount and format the disk, etc, allowing you to run a CWL workflow
in one easy step.

	Running the NCI-GDC DNA-Seq workflow

	The cwl_runner “helper” script

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

 We have created numerous examples that will help you learn to access and analyze cancer data in BigQuery, as well as examples showing how to use our APIs to query the metadata and discover where to find the data that you are looking for in Google Cloud Storage.

For the most up-to-date R and Python examples, please refer to the Community Notebooks section of the documentation. Earlier examples written in both R and Python are archived in our public github repositories: https://github.com/isb-cgc/examples-R and https://github.com/isb-cgc/examples-Python respectively.

Over the years, we have generated many in-depth examples using complex SQL queries with both R and Python/Jupyter notebooks in our monthly, Query of the Month Blog. C

We encourage the community to provide feedback on these examples and also to add your own examples to enrich this public resource!

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

BigQuery SQL Tutorial

Exploring the TCGA data in BigQuery

The ISB-CGC team has aggregated and curated the TCGA
open-access clinical, biospecimen, and Level-3 molecular data and uploaded it
into BigQuery tables that are open to the public. Additional tables have been
added to open up new analysis options.

In this tutorial, we will show you how you can begin to work with these tables
from the Google BigQuery Web UI.

Note that in order to use BigQuery,
you must have access to (ie be a member of) a GCP project.

Helpful BigQuery links

For this example, we’ll be working in the Google BigQuery Web UI [https://bigquery.cloud.google.com].

We’ve tried to simplify what you need to know to get started using the ISB-CGC BigQuery
tables in this quick
visual walkthrough [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/intro_to_BigQuery.pdf].

It’s often helpful to have a link to the docs [https://cloud.google.com/bigquery/what-is-bigquery] handy,
and especially the query reference [https://cloud.google.com/bigquery/query-reference].
(You’ll probably want to open those into new tabs of your browser, for easy access.)

Let’s query!

In your browser, go to the BigQuery Web UI [https://bigquery.cloud.google.com]

On the left side, from top to bottom we have:

	Compose Query This button opens the New Query text box, where we can write queries.

	Query History A list of your past queries… very useful.

	Job History A list of past jobs (eg copying or creating tables).

	Your Project Datasets Click the little blue triangle to create a new dataset or change projects.

	isb-cgc Publicly accessible ISB-CGC curated datasets (including TCGA and reference data sources).

	More data! Other added datasets will appear here (for example, the genomics-public-data, etc).

Note: if you do not see the isb-cgc datasets, you need to add them to your “view” by clicking on the blue arrow next to your project name at the top of the left side-bar, select “Switch to Project”, then “Display Project…”, and enter “isb-cgc” (without quotes) in the text box labeled “Project ID”. All ISB-CGC public BigQuery datasets and tables will now be visible in the left side-bar of the BigQuery web interface. You can repeat this process for other public datasets.

Querying: Lists, Joins, and Subqueries

BigQueries are very similar to regular SQL, but with some differences. (Note: you can now enable standard SQL [https://cloud.google.com/bigquery/sql-reference/enabling-standard-sql] in BigQuery.)

Typically, we select some variables (aka “fields”) from one or more tables, filter on some criteria,
and occasionally aggregate the results (such as taking an average).

In this first simple example, we are asking for the
barcodes for all casess in the CESC and HNSC
diseases, with an associated “primary solid tumor” sample. Note the use of the IN keyword.

SELECT
 project_short_name,
 case_barcode,
 Sample_Type_name
FROM
 [isb-cgc:TCGA_bioclin_v0.Biospecimen]
WHERE
 project_short_name IN ('TCGA-CESC', 'TCGA-HNSC')
 AND Sample_Type_name = 'Primary solid Tumor'

Go ahead and cut and paste the above query directly into the New Query box,
and then click the red Run Query button.

Next, let’s suppose we want to bring in some information that is available in the Clinical_data table.
To do this we need to JOIN the clinical and biospecimen tables using the SQL … JOIN … ON … construct.

SELECT
 b.case_barcode,
 a.Sample_Barcode,
 a.project_short_name,
 a.Sample_Type_name,
 a.avg_percent_tumor_cells,
 b.hpv_status
FROM (
 SELECT
 case_barcode,
 Sample_Barcode,
 project_short_name,
 Sample_Type_name,
 avg_percent_tumor_cells
 FROM
 [isb-cgc:TCGA_bioclin_v0.Biospecimen]
 WHERE
 project_short_name IN ('TCGA-CESC',
 'TCGA-HNSC')
 AND Sample_Type_name='Primary solid Tumor') AS a
JOIN (
 SELECT
 case_barcode,
 hpv_status
 FROM
 [isb-cgc:TCGA_bioclin_v0.Clinical]) AS b
ON
 a.case_barcode = b.case_barcode
GROUP BY
 b.case_barcode,
 a.Sample_Barcode,
 a.project_short_name,
 a.Sample_Type_name,
 a.avg_percent_tumor_cells,
 b.hpv_status

If you’re really paying attention, you might notice that the first query returned
836 case barcodes from the Biospecimen_data table, but the second one returned only
835 participant and sample barcodes. In a few cases, the Biospecimen_data table
contains information about samples that have no associated information in the Clinical_data
table, and the “JOIN” operation is by default an INNER JOIN which returns only the
intersection of the two tables being joined.

Another way to work with multiple tables is by using subqueries.
In the example below, we have an inner query (the middle
seven lines set off by blank space) which creates a “cohort” on the fly,
filtering by study and HPV status from the Clinical_data table.
We then use that sub-table to filter the Biospecimen_data table,
where we compute the average of the percent tumor cells, also counting
how many rows went into each average, grouped according to SampleType,
and then finally we sort by n.

SELECT
 project_short_name,
 Sample_Type_name,
 AVG(avg_percent_tumor_cells) AS avgPctTumor,
 COUNT(*) AS n
FROM
 [isb-cgc:TCGA_bioclin_v0.Biospecimen]
WHERE
 case_barcode IN (

 SELECT
 case_barcode
 FROM
 [isb-cgc:TCGA_bioclin_v0.Clinical]
 WHERE
 hpv_status = 'Positive'
 AND project_short_name IN ('TCGA-CESC', 'TCGA-HNSC')

)
GROUP BY
 project_short_name,
 Sample_Type_name
ORDER BY
 n DESC

Computing Statistics

A beneficial goal is to keep as much computation on the BigQuery side
as possible. That means we want to aggregate and compute functions that
return summary data.

In this query, we’re going to look at some summary statistics in the
clinical table.

SELECT
 case_barcode,
 project_short_name,
 gender,
 country,
 number_pack_years_smoked,
 (number_pack_years_smoked - mu) / sd AS z
FROM
 [isb-cgc:TCGA_bioclin_v0.Clinical] AS a
JOIN (
 SELECT
 vital_status,
 AVG(number_pack_years_smoked) AS mu,
 STDDEV(number_pack_years_smoked) AS sd
 FROM
 [isb-cgc:TCGA_bioclin_v0.Clinical]
 WHERE
 vital_status = 'Alive'
 GROUP BY
 vital_status) AS b
ON
 a.vital_status = b.vital_status
ORDER BY
 z DESC

The results from this query are ordered by Z score

After running a query, there are several options in the bottom Results panel.
You can get an “Explanation” showing how the query was broken into multiple Stages,
the number of input and outputs from each stage, and the amount of time spent
reading, computing, etc. In addition, you can Download or Save the Results in various ways,
including as a new BigQuery Table.
If your query will return a large number of results, you may need to click the
Show Options button to the right of the Run Query button and specific a
“Destination Table” and then turn on the “Allow Large Results” option.

Making Summary Tables

Another way to create summary information is by creating tables of counts as shown below.
With summary tables, we can even compute statistics like a ChiSq.

SELECT
 table_cell,
 COUNT(*) AS n
FROM (
 SELECT (
 CASE
 WHEN gender = 'MALE' AND hpv_status = 'Positive' THEN 'Male_and_HPV_Pos'
 WHEN gender = 'MALE' AND hpv_status = 'Negative' THEN 'Male_and_HPV_Neg'
 WHEN gender = 'FEMALE' AND hpv_status = 'Positive' THEN 'Female_and_HPV_Pos'
 WHEN gender = 'FEMALE' AND hpv_status = 'Negative' THEN 'Female_and_HPV_Neg'
 ELSE 'None'
 END) AS table_cell,
 FROM
 [isb-cgc:TCGA_bioclin_v0.Clinical]
 WHERE
 project_short_name IN ('TCGA-CESC',
 'HNSC')
 HAVING
 table_cell <> 'None')
GROUP BY
 table_cell
ORDER BY
 n DESC

LiftOver from hg19 to hg38

Suppose you want to work with the newer hg38 reference. We can use BigQuery to
perform the liftOver operation on the methylation probe coordinates using a
simple JOIN query. (This query takes approx 25s and produces an output table
with one row for each of the input rows in the input annotation table.)

SELECT
 a.probeID AS Illumina_probeID,
 a.hg19_chr AS hg19_chr,
 a.hg19_pos AS hg19_pos,
 b.hg38_chr AS hg38_chr,
 b.hg38_pos AS hg38_pos
FROM (
 SELECT
 IlmnID AS probeID,
 CHR AS hg19_chr,
 MAPINFO AS hg19_pos
 FROM
 [isb-cgc:platform_reference.methylation_annotation]) a
LEFT OUTER JOIN EACH (
 SELECT
 LTRIM(hg19_ref,"chr") AS hg19_chr,
 hg19_pos,
 LTRIM(hg38_ref,"chr") AS hg38_chr,
 hg38_pos
 FROM
 [isb-cgc:genome_reference.liftOver_hg19_to_hg38]) b
ON
 a.hg19_chr=b.hg19_chr
 AND a.hg19_pos=b.hg19_pos

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Introduction to the Google Cloud Platform

TODO: link to slide deck

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Integrative Analysis Tutorial

This tutorial is intended to guide you through several different components of the ISB-CGC platform
and some of the different ways that you can approach working with the data that is available in
Google Cloud Storage, BigQuery, and Google Genomics.

In this example, we will study the potential effects of HPV integration on the
expression of recurrent target genes in CESC and HNSC tumors. This example
demonstrates the use of BigQuery and R to query multiple tables across
multiple data sets. We will also show users how to bring in their own data to
use in conjunction with the TCGA data already available as BigQuery tables. In
this exercise, we will (loosely) reproduce a figure from Tang et. al.,
visualizing altered expression of host genes frequently targeted by HPV.

References:
Tang et. al. The landscape of viral expression and host gene fusion and adaptation in human cancer.
Nature Communications 4, Article number:2513|doi:10.1038/ncomms3513

	Web Application Analysis Tutorial

	Analysis with R

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Introduction, Workshop Goals, and System Overview

TODO: link to slide deck

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Web Application Analysis Tutorial

This tutorial will be conducted live and allow you to follow along. If you get lost or would like to review what was covered,
you may download this pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp.pdf].

Other useful Tutorials

	Linking your NIH and Google Identities [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html?#linking-your-nih-and-google-identities]

	IGV Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_IGV.pdf])

	SeqPeek Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_SeqPeek.pdf])

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Analysis with R

Differential gene expression associated with HPV integration

In this example, we will study the potential effects of HPV integration on the
expression of recurrent target genes in CESC and HNSC tumors. This example
demonstrates using R to issue BigQuery queries involving multiple tables across
multiple data sets. We will also show users how to bring in their own data to
use in conjunction with the TCGA data already available as BigQuery tables. In
this exercise, we will reproduce some figures from Tang et. al. [1] to visualize
altered expression of host genes frequently targeted by HPV.

References:
Tang et. al. The landscape of viral expression and host gene fusion and adaptation in human cancer.
Nature Communications 4, Article number:2513|doi:10.1038/ncomms3513

Loading libraries

require(bigrquery,quietly = TRUE) || install.packages('bigrquery',verbose = FALSE)
require(httpuv, quietly = TRUE) || install.packages('httpuv',verbose=FALSE)
require(ggplot2,quietly = TRUE) || install.packages('ggplot2',verbose = FALSE)

Your project ID

You will be using your own project ID. At certain points in the code, it will
be necessary to complete the code.

main_cloud_project = "isb-cgc"
my_cloud_project = "your_project_id"
tcga_data_set = "TCGA_hg38_data_v0"

First query

Now let’s see if things are working.

bigrquery::list_tables(main_cloud_project, tcga_data_set)

In this tutorial, we will be investigating two studies using two existing
BigQuery tables. Additionally, we’re going to BYOD “Bring your own data”.

study=c('TCGA-CESC','TCGA-HNSC')

clinical_table = "`isb-cgc.TCGA_bioclin_v0.Clinical`"

Constructing Queries

One of the great things about working in a scripting environment, is that our
analysis – the queries – we write, can be constructed programmatically.
That makes it easy to apply the same structured queries to many questions.
In the next code block is an example of how to do that.

sqlQuery = paste("SELECT case_barcode, project_short_name AS project, hpv_calls, hpv_status ",
 "FROM ", clinical_table,
 " WHERE project_short_name in (",paste(shQuote(study),collapse = ','),")",sep="")

sqlQuery

hpv_table = query_exec(sqlQuery,project = my_cloud_project)

dim(hpv_table)

head(hpv_table)

We can do some quality control ...
Assert that if hpv_calls is NA, hpv_status is Negative
stopifnot((is.na(hpv_table$hpv_calls) && hpv_table$hpv_status=="Negative") || !is.na(hpv_table$hpv_calls))

Let's explore the cohort
ggplot(data=hpv_table, aes(x=hpv_status, fill=project)) + geom_bar(stat="count", position=position_dodge())

Uploading Data

The exact location of HPV integration is not available in the TCGA data,
so instead we’ll get a list of frequently targeted genes that was published
with this paper:

Ka-Wei Tang et. al. The Landscape of viral expression and host gene fusion and adaptation in human cancer. doi:10.1038/ncomms3513

(Supplementary Data 2: Integration analysis results)

We will access the data from our workshop bucket using the command line or from
the Google Cloud Console. Using the cloud console, go to https://console.cloud.google.com and find the
workshop bucket.

Using the google command line tool:

gsutil cp gs://isb-cgc-workshop/data/Larsson/ncomms3513-s3.tsv .
gsutil cp gs://isb-cgc-workshop/data/Larsson/ncomms3513-s3_Schema.json .

Now the data is in our directory, but we need to transform it into a BQ table.
To do that, we need to create a data set in our project. We can do this from within the BigQuery
web UI by clicking on the little blue triangle next to your project ID on the left.
Or we can do this on the command line using the bq command line tool.

gcloud init

bq help

bq ls

bq mk workspace

bq load --source_format CSV --field_delimiter "\t" --schema ncomms3513-s3_Schema.json workspace.ncomms3513_s3 ncomms3513-s3.tsv

Integrating with the expression data

Now we can directly query our own data, and start to combine it with other tables.
Let’s try it out!

This next query is going to select the genes that were associated with HPV
integration in CESC and HNSC tumors.

sqlQuery = "
SELECT
 Overlapping_genes,
 Cancer
FROM
 `isb-cgc-04-0030.workspace.ncomms3513_s3`
WHERE
 Cancer IN ('TCGA-CESC','TCGA-HNSC')
 AND Overlapping_genes <> 'Intergenic'
GROUP BY
 Cancer,
 Overlapping_genes
 "

affected_genes = query_exec(sqlQuery,project = my_cloud_project)

head(affected_genes)

table(affected_genes$Cancer)

Next, with those offen affected genes, we will query gene expression data.

query <- "
SELECT
 project_short_name,
 gene_name,
 AVG(HTSeq__FPKM) as mean_expression
FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name IN ('TCGA-CESC','TCGA-HNSC')
 AND gene_name IN (
 SELECT
 Overlapping_genes AS gene_name
 FROM
 `isb-cgc-04-0030.workspace.ncomms3513_s3`
 WHERE
 Cancer IN ('TCGA-CESC','TCGA-HNSC')
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 gene_name)
GROUP BY
 project_short_name,
 gene_name
ORDER BY
 mean_expression"

running the query.
mean_affected_genes = query_exec(query, project = my_cloud_project)

we'll create some more meaningful x-axis labels
mean_affected_genes$xlabel <- paste0(mean_affected_genes$project_short_name, "_", mean_affected_genes$gene_name)

Now we can visualize it.
qplot(data=mean_affected_genes,
 x=factor(x = xlabel, ordered = T, levels = xlabel),
 y=mean_expression,
 col=project_short_name) +
 theme(axis.text.x = element_text(angle = 90, hjust = 1, size=4)) +
 xlab("Project_Gene")

Computing Statistics

Instead, if we want to get the actual gene expression values, we could query
for that, and retrieve it as a data.frame.

sqlQuery = "
SELECT
 case_barcode,
 sample_barcode,
 project_short_name,
 gene_name,
 HTSeq__FPKM
FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name IN ('CESC','HNSC')
 AND gene_name IN (
 SELECT
 Overlapping_genes as gene_name
 FROM
 `isb-cgc-04-0030.workspace.ncomms3513_s3`
 WHERE
 Cancer IN ('TCGA-CESC','TCGA-HNSC')
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 gene_name)
 "

gexp_affected_genes = query_exec(sqlQuery,project = my_cloud_project)

#view results
head(gexp_affected_genes)

a couple different ways to look at the results
#qplot(data=gexp_affected_genes, x=project_short_name, y=HTSeq__FPKM, col=gene_name, geom="boxplot")
#qplot(data=gexp_affected_genes, x=project_short_name, y=log2(HTSeq__FPKM), col=gene_name, geom="boxplot")
qplot(data=gexp_affected_genes, x=log2(HTSeq__FPKM+1), col=gene_name, geom="density") + facet_wrap(~ project_short_name)

Not all the samples listed in the clinical data have gene expression data, however.
Let’s filter the hpv_table to match the samples to those in gexp_affected_genes

require(tidyr,quietly = TRUE) || install.packages('tidyr',verbose = FALSE)
require(dplyr,quietly = TRUE) || install.packages('dplyr',verbose = FALSE)
require(broom,quietly = TRUE) || install.packages('broom',verbose = FALSE)

let's get rid of 'indeterminate' samples
hpv_table = dplyr::filter(hpv_table, hpv_status != "Indeterminate", case_barcode %in% gexp_affected_genes$case_barcode)

T-tests

Now, we are going to perform t.tests on expression by hpv_status and study.

gxps <- merge(x=gexp_affected_genes, y=hpv_table, by=c("project_short_name","case_barcode"))

Performing a t-test between hpv+ and hpv- by project_short_name and gene
res0 <- gxps %>%
group_by(project_short_name, gene_name) %>%
do(tidy(t.test(log2(HTSeq__FPKM+1) ~ hpv_status, data=.))) %>%
ungroup() %>%
arrange(desc(statistic))

These are the top 5 results ...
top5 <- select(top_n(res0, 5, statistic), project_short_name, gene_name)

Let's subset the data by the top 5 results...
res1 <- merge(x=top5, y=gxps) %>% mutate(Project_Gene = paste0(project_short_name, "_", gene_name))

now we can plot the results...
ggplot(res1, aes(x=Project_Gene, y=log2(HTSeq__FPKM+1), fill=hpv_status)) + geom_boxplot()

Making BigQueries

Previously, we downloaded data and performed some work on it. But another way to work
is to compute as much as possible in the cloud, and use R to visualize summary results.

Please see: https://cloud.google.com/bigquery/query-reference

sqlQuery = "
SELECT
 case_barcode,
 sample_barcode,
 project_short_name,
 gene_name,
 HTSeq__FPKM
FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name = 'TCGA-CESC'
 AND case_barcode IN (
 SELECT
 case_barcode
 FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 WHERE
 hpv_status = 'Positive')
 AND gene_name IN (
 SELECT
 Overlapping_genes AS gene_name
 FROM
 `isb-cgc-04-0030.workspace.ncomms3513_s3`
 WHERE
 Cancer = 'TCGA-CESC'
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 gene_name)
"

q1 = query_exec(sqlQuery,project = cloud_project_workshop)

dim(q1)

Now lets make a small change, and get gene expression for subjects that are hpv negative.

sqlQuery = "
SELECT
 case_barcode,
 sample_barcode,
 project_short_name,
 gene_name,
 HTSeq__FPKM
FROM
 `isb-cgc:TCGA_hg38_data_v0.RNAseq_Gene_Expression`
WHERE
 project_short_name = 'TCGA-CESC'
 AND case_barcode IN (
 SELECT
 case_barcode
 FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 WHERE
 hpv_status = 'Negative')
 AND gene_name IN (
 SELECT
 Overlapping_genes AS gene_name
 FROM
 `isb-cgc-04-0030.workspace.ncomms3513_s3`
 WHERE
 Cancer = 'TCGA-CESC'
 AND Overlapping_genes <> 'Intergenic'
 GROUP BY
 gene_name)
"

q2 <- query_exec(sqlQuery,project = cloud_project_workshop)

dim(q2)

Now we merge the previous two queries, and compute T statistics using
BigQuery built in functions, SQRT, MEAN, STDDEV, POW, COUNT, and LOG2.

Please see: https://cloud.google.com/bigquery/query-reference

q <- "
 WITH
 ## we use the 'WITH' keyword in order to create a few
 ## preliminary tables that we will use later on in the
 ## query -- this helps in writing 'modular' SQL that
 ## is easier to read
 --
 ## start by getting the list of genes of interest from
 ## the paper's table (will result in a list of 106 genes)
 geneList AS (
 SELECT
 Overlapping_genes AS gene_name
 FROM
 `isb-cgc-04-0030.workspace.ncomms3513_s3`
 WHERE
 Overlapping_genes <> 'Intergenic'
 GROUP BY
 gene_name),
 ## next, get the identifiers (barcodes) for all HPV+ cases
 ## (will result in a list of 383 cases)
 posCaseList AS (
 SELECT
 case_barcode
 FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 WHERE
 hpv_status = 'Positive'),
 ## now do the same for all HPV- cases
 ## (will result in a list of 664 cases)
 negCaseList AS (
 SELECT
 case_barcode
 FROM
 `isb-cgc.TCGA_bioclin_v0.Clinical`
 WHERE
 hpv_status = 'Negative')
 ##
 ## Now we being our main SELECT statement, which actually
 ## wraps a pair of SELECTs that are JOINed together
 ##
 SELECT
 p.gene_name AS gene,
 p.project_short_name,
 p.x AS x,
 p.sx2 AS sx2,
 p.nx AS nx,
 o.y AS y,
 o.sy2 AS sy2,
 o.ny AS ny,
 (p.x-o.y) / SQRT((p.sx2/p.nx) + (o.sy2/o.ny)) AS T
 FROM (
 # first the gene expression summaries for hpv+ tumors
 SELECT
 project_short_name,
 gene_name,
 AVG(LOG(HTSeq__FPKM+1,2)) AS y,
 POW(STDDEV(LOG(HTSeq__FPKM+1,2)),2) AS sy2,
 COUNT(case_barcode) AS ny
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 project_short_name = 'TCGA-CESC'
 AND case_barcode IN (
 SELECT
 case_barcode
 FROM
 posCaseList)
 AND gene_name IN (
 SELECT
 gene_name
 FROM
 geneList)
 GROUP BY
 project_short_name,
 gene_name
 HAVING
 ny>0
 AND sy2>0) AS o
 JOIN (
 # Then we get the gene expression summaries from hpv-
 SELECT
 project_short_name,
 gene_name,
 AVG(LOG(HTSeq__FPKM+1,2)) AS x,
 POW(STDDEV(LOG(HTSeq__FPKM+1,2)),2) AS sx2,
 COUNT(case_barcode) AS nx
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 project_short_name = 'TCGA-CESC'
 AND case_barcode IN (
 SELECT
 case_barcode
 FROM
 negCaseList)
 AND gene_name IN (
 SELECT
 gene_name
 FROM
 geneList)
 GROUP BY
 project_short_name,
 gene_name
 HAVING
 nx>0
 AND sx2>0) AS p
 ON
 p.gene_name = o.gene_name
 AND p.project_short_name = o.project_short_name
 GROUP BY
 gene,
 project_short_name,
 x,
 sx2,
 nx,
 y,
 sy2,
 ny,
 T
 ORDER BY
 T DESC
 "

 t_test_result <- query_exec(q, project = cloud_project_workshop)

 head(t_test_result)

and we can see the same results in the previously done work.
 res0

Extras

Transform gexp_affected_genes_df into a gexp-by-samples feature matrix

gexp_fm = tidyr::spread(gexp_affected_genes,gene_name,HTSeq__FPKM)

gexp_fm[1:5,1:5]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Analysis with R and BigQuery

Computing on the BigQuery side; making correlation matrices

In this example, we are going to compute a correlation matrix (or co-expression)
entirely on the BigQuery side. Since we’re in R-land, we can easily visualize
the matrix as a heatmap. We are also going to query for gene lists using
Gene Ontology annotation, and access the End Points API to get a list of samples.

Loading libraries

require(bigrquery, quietly = TRUE) || install.packages('bigrquery',verbose = FALSE)
require(httpuv, quietly = TRUE) || install.packages('httpuv',verbose=FALSE)
require(ggplot2, quietly = TRUE) || install.packages('ggplot2',verbose = FALSE)

The ISB-CGC R Examples Package

The collection of examples can be found at:
https://github.com/isb-cgc/examples-R

To install the package, we use the devtools package.

require(devtools, quietly = TRUE) || install.packages('devtools',verbose = FALSE)
require(ISBCGCExamples, quietly = TRUE) || install_github("isb-cgc/examples-R", build_vignettes=F)

If you needed to install any of the packages, remember, you still need to import it!

Your project ID

You will be using your own project ID. At certain points in the code, it will
be necessary to complete the code.

my_cloud_project = "your_project_id"
tcga_data_set = "TCGA_hg38_data_v0"

First query

Now let’s see if things are working.

bigrquery::list_tables("isb-cgc", tcga_data_set)

Using BigQuery to compute correlation matrices

A correlation matrix using gene expression is going to take the correlation
between each pair of genes. Usually, this matrix can then be clustered to
discover gene modules.

In this query, we’re going to use the BigQuery CORR function (one of the
many built-in mathematical functions) to compute a Pearson’s correlation.

You can find all the function information at:
https://cloud.google.com/bigquery/query-reference

The general structure of the query is going to be:

select
 genes and correlation
from
 subtable with genes and samples of interest
joined to
 same subtable of genes and samples

q <- "
 SELECT
 a.gene_name AS gene1,
 b.gene_name AS gene2,
 CORR(a.HTSeq__FPKM,
 b.HTSeq__FPKM) AS corr
 FROM (
 SELECT
 *
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 gene_name IN ('APLN',
 'CCL26',
 'IL19',
 'IL37')
 AND project_short_name = 'TCGA-COAD') AS a
 JOIN (
 SELECT
 *
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 gene_name IN ('APLN',
 'CCL26',
 'IL19',
 'IL37')
 AND project_short_name = 'TCGA-COAD') AS b
 ON
 a.aliquot_barcode = b.aliquot_barcode
 GROUP BY
 gene1,
 gene2"

corrs <- query_exec(q,my_cloud_project, use_legacy_sql=F)

transform to a matrix, and give it rownames
library(tidyr)
corrmat <- spread(corrs, gene1, corr)
rownames(corrmat) <- corrmat$gene2

visualize the matrix
library(pheatmap)
pheatmap(corrmat[,-1])

It’s easy to make a couple changes to this query, enabling a correlation
matrix per study. Try it!

Getting a list of high variance genes

When we make queries from R, the results come back as a data.frame.
Let’s use the GO annotation, and get a list of genes that are
related to the immune system. The GO Annotation table is found
in the genome_reference data set, and GO:0006955 references the
immune response.

q <- "
SELECT
 DB_Object_Symbol
FROM
 `isb-cgc.genome_reference.GO_Annotations`
WHERE
 GO_ID = 'GO:0006955'"

query_exec(q, my_cloud_project, use_legacy_sql=F)

That query returns 472 genes. But let’s suppose we want the top 50 by
coefficient of variance.

q <- "
 SELECT
 gene_name,
 STDDEV(HTSeq__FPKM+1) / AVG(HTSeq__FPKM+1) AS cv
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 gene_name IN (
 SELECT
 DB_Object_Symbol
 FROM
 `isb-cgc.genome_reference.GO_Annotations`
 WHERE
 GO_ID = 'GO:0006955')
 AND project_short_name = 'TCGA-BRCA'
 GROUP BY
 gene_name
 ORDER BY
 cv DESC
 LIMIT
 50"

result <- query_exec(q, my_cloud_project, use_legacy_sql=F)
genes <- result$gene_name

Now we have a list of genes that we can carry to further analysis.

Getting a list of samples from the endpoints

From R we can access the cohorts we created using the web app. To do that we
use the End Points API. The API is essentially a set of html requests. A
small wrapper is included as part of the isb-cgc examples-R package.

https://github.com/isb-cgc/examples-R/blob/master/inst/doc/Working_With_Barcode_Lists.md

To get started, import the ISBCGCExamples library.

library(ISBCGCExamples)

The first step is creating a token. This token contains your authentication status,
and lets the service know about what information is available to you.

my_token <- isb_init()

To get a listing of the previously created cohorts, we can use the list_cohorts
function that takes a token, and returns a list with items including
‘count’, ‘items’, ‘kind’, and ‘etag’. The count shows the number of saved
cohorts and the items contains information about the cohorts.

first get a list of my saved cohorts.
my_cohorts <- list_cohorts(my_token)
names(my_cohorts)

to get the names of my saved cohorts
lapply(my_cohorts$items, function(x) x$name)

Now that we have the cohort IDs, we can collect the various barcodes contained
in the cohort. These include patient barcodes, sample barcodes, and
aliquot barcodes. To do this, we can use the barcodes_from_cohort function.

HERE I’m using my cohort #4, but change this to whatever you have saved.

get the cohort IDs
my_cohort_id <- lapply(my_cohorts$items, function(x) x$id)[[4]]

then ping the endpoints with the cohort ID
my_barcodes <- cohort_barcodes(my_cohort_id, my_token)
names(my_barcodes)

The object returned from barcodes_from_cohort is again a list, this time with
elements ‘cohort_id’, ‘sample_count’, ‘case_count’, ‘cases’, and ‘samples’.
The cases and samples elements are also lists, but lists of cases or sample barcodes.

samples <- unlist(my_barcodes$samples)
836 samples

Programmatically constructing Queries

One of the great things about working in a scripting environment, is that our
analysis – the queries – we write, can be constructed programmatically.
That makes it easy to apply the same structured queries to many questions.
But also we can incorporate long lists of samples or genes into a query.

#function for formatting lists..
sqf <- function(x) {
 paste("('",paste(x, collapse="','"),"')", sep="")
}

q <- paste("
SELECT
 a.gene_name as gene1,
 b.gene_name as gene2,
 CORR(a.HTSeq__FPKM, b.HTSeq__FPKM) as corr
FROM (
 SELECT
 *
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 gene_name IN ", sqf(genes), "
 AND sample_barcode IN ", sqf(samples), "
) AS a
JOIN (
 SELECT
 *
 FROM
 `isb-cgc.TCGA_hg38_data_v0.RNAseq_Gene_Expression`
 WHERE
 gene_name IN ", sqf(genes), "
 AND sample_barcode IN ", sqf(samples), "
) AS b
ON
 a.aliquot_barcode = b.aliquot_barcode
GROUP BY
 gene1,
 gene2", sep=" ")

corrs <- query_exec(q,my_cloud_project, use_legacy_sql=F)

transform to a matrix, and give it rownames
library(tidyr)
corrmat <- spread(corrs, gene1, corr)
rownames(corrmat) <- corrmat$gene2

visualize the matrix
library(pheatmap)
pheatmap(corrmat[,-1])

[image: alternate text]

From Lists to Matrices

Transform gexp_affected_genes_df into a gexp-by-samples feature matrix

gexp_fm = tidyr::spread(gexp_affected_genes,HGNC_gene_symbol,normalized_count)

gexp_fm[1:5,1:5]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

Workshop Wrap-Up

TODO: add wrap-up info, say a few things about Datalab and link to that material …

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

9/22 ISB-CGC Webinar - Using BigQuery with R

This tutorial will be conducted live and allow you to follow along.

The goal of this tutorial is to show you how to explore our BigQuery tables and answer any questions you might have.

It is also a useful time for us to gather feedback and learn what our users want to be able to do. So please come with your research questions and we can try to tackle them together.

Meeting Details

	Date

	September 22, 2016

	Time

	10:00 AM Pacific Time, 1:00 PM Eastern Time

	WebEx Link

	https://srameeting.webex.com/srameeting/j.php?MTID=m5612d723f442fb44e016bd58d2ea3920

	Audio Bridge

	1-800-747-5150, Access Code: 3201312 Global Conference Dial-In Numbers [https://conf.cfer.com/?an=8007475150&ac=3201312&startview=gos&login=true]

Topics

Cloud Console

First let’s start at the cloud console [https://console.cloud.google.com].

	Manage project settings : IAM link for permission settings

	Settings, project names

	Quotas, set maximum usage

	Buckets, used for bringing in large tables. (create / delete)

	CloudShell, can connect to a VM

BigQuery

BigQuery [https://bigquery.cloud.google.com]

BigQuery Reference [https://cloud.google.com/bigquery/query-reference]

	The browser interface

	query & job histories

	switching projects

	adding project to your workspace (silver-wall-555)

	making data sets.

	by saving queries

	New Tables

	CCLE (cancer cell line encyclopedia)

	https://portals.broadinstitute.org/ccle/home

	check out mutation calls, schema, details, preview

	GDC metadata for files https://gdc.cancer.gov/

	genome references

	tcga_hg19_data_v0

	methylation by chr

	joined RNA-seq tables (mRNA_UNC_RSEM)

	joined miRNA tables (miRNA_Expression)

	isoform tables

	cohorts

	example queries [https://github.com/isb-cgc/readthedocs/blob/master/docs/include/big_query_examples.sql]

Using R

	getting set up. [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/GettingStartedWithR.html]

	the bigrquery library [https://github.com/rstats-db/bigrquery]

	the bigrquery CRAN page [https://cran.r-project.org/web/packages/bigrquery/index.html]

	bigrquery functions

	The examples-R github repo [https://github.com/isb-cgc/examples-R]

	installing the package

	tour of the package

	workshop doc v2 [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/workshop/Workshop_R_tut_v2.html]

	extra links

	advanced: using dplyr to make queries [https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html]

	workshop doc #1 [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/workshop/Workshop_R_tut.html]

Other useful Links

	DIY Workshop [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/DIYWorkshop.html] - Please look for the links under “ISB-CGC Open-Access BigQuery Tables.”

	Google BigQuery [https://cloud.google.com/bigquery/]

	Google Examples [https://support.google.com/analytics/answer/4419694?hl=en]

	Getting Started with R [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/GettingStartedWithR.html]

	Code examples can be found at our github repo. [https://github.com/isb-cgc/examples-R]

	BigQuery Workshop doc v2 [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/workshop/BQ_SQL_tut_v2.html]

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

9/13 Web Application Online Tutorial

This tutorial will be conducted live and allow you to follow along. If you get lost or would like to review what was covered, you may download this pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp.pdf].

The goal of this tutorial is to show you how to use the ISB-CGC Webapp [https://isb-cgc.appspot.com] and answer any questions you might have about it.

It is also a useful time for us to gather feedback and learn what our users want to be able to do. So please come with your research questions and we can try to tackle them together.

Meeting Details

	Date

	September 13, 2016

	Time

	10:00 AM Pacific Time, 1:00 PM Eastern Time

	WebEx Link

	https://srameeting.webex.com/srameeting/j.php?MTID=mec27d39212a3d7f98913c83d0c379909

Other useful Tutorials

	Linking your NIH and Google Identities [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-TCGA-Contolled-Access-Data.html?#linking-your-nih-and-google-identities]

	IGV Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_IGV.pdf])

	SeqPeek Tutorial (pdf [https://raw.githubusercontent.com/isb-cgc/readthedocs/master/docs/include/Intro_to_Webapp_SeqPeek.pdf])

	DIY Workshop [http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/DIYWorkshop.html] - Please note that the DIY Workshop includes materials and instructions that are not required to use the web application.

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

 _images/OsimisLength.png

_images/OsimisList.png

_images/OsimisInvertColor.png

_images/OsimisLayout.png

_images/OsimisMultiVP.png

_images/apr_fig1_bucket_output.png
Buckets / isb-cgc-02:0001-workflows / bamtobam / output

ewl_runner38290.sh
cwl_shutdown-38290.h

ewl_startup-38290.5h

Status 38290 0

stderr 38200 00

Stdout38200 0
WaEncodeUnRepliSeqBiGTbAInRep1_OUTbam
‘WoEncodeURepliSeqGm12801G1bAInRep1_OUT bam

‘woEncodeUwRepliSeqGm12878S4AInRep1_OUT.bam

size

9138

1.38K8

582K8

108

13.72K8

52118

62.14M8

6212M8

58.67 MB

Type

application/x-sh
application/x-sh
application/x-sh
text/plain

text/plain

text/plain
application/octet stream
application/octet stream

application/octet-stream

Storage class

Regional
Regional
Regional
Regional
Regional
Regional
Regional
Regional

Regional

_images/OsimisPanning.png

_images/april_table1.png
Row.

casel
TCGA-06-5416
TCGA-DU-6392
TCGA-06-5416
TCGA-06-5416
TCGA-19-5956
TCGA-19-5956

studyt
TCGA-GBM
TCGALGG
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM

geneCountt
5221
4781
5221
5221
3266
3266

case2
TCGA-B-7651
TCGA-B-7651
TCGA-DU-6392
TCGA-19-5956
TCGA-B-7651
TCGA-DU-6392

study2
TCGA-PAAD
TCGA-PAAD
TCGALGG
TCGA-GBM
TCGA-PAAD
TCGALGG

geneCount2 gene,

5877
5877
4781
3266
5877
4781

tersection gene_union

2277
2141
1840
1390
1478
1259

8821
8517
8162
7097
7665
6788

jaccard_index

0.2581339984128784
0.25137959375366914
0.22543494241607448
0.19585740453712835
0.19282452707110243
0.18547436652916913

_images/april_plot2.png
IsSample065416
°0

jaccard_index

0.1-
X Y4
.
3
00- ’
0 500 1000 1500

gene_intersection

2000

1

_images/august.png
Strata == mutation_status-Mutant == mutation_status-WT

100
075
z
3
g
g 050
]
g
<
3
025
p < 0.000} —\
000
G 1000 2000 3000 000
Time
Number at risk
% mutation_status=Mutant{ 26 6 2 1 o
@ mutation_status=WT{ 362 25 4 1 o
G 1000 2000 3000 000

Time

_images/april_table2.png
Row.

tegaSample
TCGA-CA-6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A
TCGA-CA6718-01A

geneCountt
1560
1560
1560
1560
1560
1560
1560

cosmicSample

sysucc-311T
YUKLAB
YUKAT
YUWAND
YURAY
YULAN
©SCCP7

Primary_site
large_intestine
skin
skin
skin
skin
skin

skin

Primary_histology ~geneCount2

carcinoma
malignant_melanoma
malignant_melanoma
malignant_melanoma
malignant_melanoma
malignant_melanoma

carcinoma.

2042
2175
3708
1069
1335
1342

647

intersection gene_u

07
240
333
140
149
149
104

n
4195
3495
4933
2489
2746
2753
2103

jaccard_index
0.0731823599523242
0.06866952789699571
0.06750456111899453
0.0562474889513861
0.054260742898761836
0.054122775154377044
0.04945316214931051

_images/brca_vs_stad_dendrogram.png
BRCA in blue and STAD in red

el

LLL L LLLLLLL L LLLLLLLLLLLLLLLLLLLLC

AN
~— —
o —

-98YV-00-VOO L

-HOYV-NH-YOOL

OOOOOOOOOOIOOOOOOOO
%)
($)
3
4
o
<
Q
(8]
[

>o0005
NOLO>-
OIS
33333
==l
TTits
<<@<0
80080
iy

©ch
QI
<

222

TT
<
Y]
O
I

QOO
0 0

LOOOOI
3333

2
>
<
<<
2DD

<

33
o7
23
35
O

9]
<
-
:II:
<
[0
O
2

71910]
3
2D,
Tz

<<
O
O
=

3
[}
u
<
[0
O
P

o0 LT
3333
~OrOD
<
O
O
=

3

QUIT
<
19
O
=

§omévowu

e
<
0
O
2

3
2
a
<
1o}
O
3

3%
<
(a]
O
<
O
O
¢

EEO“E
N
o
<
1Y)
O
F

2
<
|
Q
<
0]
O
2

Zm>
>0
N
<
z
I
<<
O
O
=

N1
.
s
<
=)
ul
<
(V]
O
2

[]=)
<

32
N

<n!
i
35
(S

SETSES
<<g
<34
o-iE
375
LR
PER

T 1T
N

000z
<t
o]
<
C
<
<
(O]
O
=

a5t
iR
352
983
Sy

OOOOOOOOOOOOOOOOOOOIOOOOOOOOOOOOOOOOOO
N
(¢}
s}
<
Y
Q
<<
V]
O
=

o33

OOOOIOOO
]
[rstere i qaN
1442
Ol
<=50
St
Q0B0
OG0
FECHE

<
1)
=
<
A
o
&

OEE
3
=
Q
<
19}
O
=

3
<
XS
o
&
0
O
2

29550555565055
AONO>-N>-O>-—N0. L O

To83arEnesEE
3399944932933
L 014 AN a0 T
2aolioZogesLing
T L L <
53800038085580
OFRFRFROFP PPe

3532
223
Shids
L
SO0
S00
o

=
$
<
O\,
<
<
19}
O
o

o
250
333
S
<L LT
228
PeR

OOOOOOOIOOOOOOO
N
3
<
N
<
<
QO
($]
[

7]
2

= -/V-VOOL

_images/bq_ml_costs.png
Costs

This tutorial uses billable components of Cloud Platform, including:

« Google BigQuery
« BigQuery ML

Youincur charges for:

« Storing your ML model and training data in BigQuery
« The first 10 GB of storage is free each month.

« Querying data in BigQuery
« The first 1 TB is free each month.
« If you are using flat-rate pricing, query costs are included in the monthly flat-ate price.

« Running BigQuery ML SQL statements

_images/brca_vs_stad_heatmap_2.png
e R

Serooonsco

<.
2
¥
5

3

| TCGA-FP-A4BF-01A

TCGA-GM-A4E0-01A
TCGA-D8-A4Z1-01A
TCGA-BR-A4IU-01A
TCGA-BR-A453-01A
TCGA-CD-A4MI-01A
TCGA-CD-A489-01A
TCGA-D7-A4YU-01A
R-A4CS-01A
-A4GY-01A
TCGA-HU-A4GJ-O1A

3A-BR-A4QI-01A
A-D7-A4YX-01A

A-AQ-A540-01A
A-BH-A5J0-01A
A-A7-A56D-01A
A-A7T-A4SB-01A

A-A2-AGRX-01A

AAT-A4SEQTA

3A-AR-A5QN-01A
3A-GM-A5PX-01A
A-HN-A20B-01A
GA-GM-A5PV-01A
A-OL-ASRY-01A

A-OL-ASRV-01A
A-HU-A4G2-01A
TCGA-EQ-A4SO-01A
GA-BR-A4CR-01A

TCGA-BR-A4J5-01A
-BR-A4J8-01A
TCGA-BR-A4J9-01A
TCGA-BR-A4IV-01A

_images/brca_vs_stad_heatmap.png
StudyA
3 BRCA
. _ STAD

R e PR

e g S25

TZORO0C0RE AT L0
3

CGA- L%_ME‘l-
'CGA-MS-A51U-

'CGA-OL-ASDA-01A
CGABH-ASIZ-OTA

(al/)lalalal
;29357
ey
gasss
00000

‘CGA-OL-A5D!

TCGA-BH-A5J0-01A
A-A7-A56D-01A
A-AQ-A540-01A
GA-E9-ASFK-01A
GA-A2-A4S1-01A
A-A7-A4SB-O1A
GA-A2-A4RX-01A
A-AT-A4SE-01A
A-AT-A4SA-01A
A-LL-ASYN-O1A
GA-ES-A54Y-01A
A-OL-ASD6-01A
A-OL-ASD8-01A
A-OL-ASD7-01A
‘GA-PE-ASDD-01A
GA-PE-ASDC-01A
GA-PE-ASDE-01A
A-LQ-A4E4-01A

5A-BR-A44T-01A
A-OL-A5S0-01A
A-LL-ASYO-01A

A

]
il I IR StudyA
ARRNRNNNRRRTNNNANNNND DO D NINNIEM WH 1

il

A-BR-A4PE-01A
A-BR-A4CR-01A
A-D7-A4YU-01A
A-BR-A4CS-01A
A-HU-A4GY-01A

A-HU-A4GF-01A
A-HU-A4GD-01A

P e e e e] P e e e e e e e e e]
QQQQQRRNNNNNNNAAAAARNRNRNNNNAAAAAAAARNNNNNNNNAAAAANARRARNNNNNNAAAAAANNNARNNNAANAAAAAANNNNNNNAAY

\-HU-A4GN-01A
TCGA-D7-A4YX-01A
TCGA-CD-A486-01A
TCGA-GM-A4E0-01A
TCGA-D8-A4Z1-01A

_images/apc_kras_roc.png
Row precision recall accuracy f1_score log_loss roc_auc

1 0.8068181818181818 0.7717391304347826 0.8986666666666666 0.7888888888888889 0.24625310129724287 0.916799

_images/apc_feat_weights.png
category
APC Mut
APC Nonsense_Mutation
APC INS
APC Frame_Shift_Ins
APC DEL
APC Frame_Shift_Del
APC SNP
APC WT
APC Splice_Site
APC Missense_Mutation
APC Silent

weight
-0.8397549393679742
-0.8347451580229922
-0.8118321576319595
-0.8048143387523083
-0.8006457455945754
-0.8006457455945754
-0.7599227764016531
0.5010719567029974
-0.18532465379406166
-0.06318992845640045
0.0

_images/OsimisGrid.png

_images/OsimisInitialDisplay.png

_images/OsimisFlipVertically.png

_images/OsimisGlass.png

_images/WorkbookDetails.png
Your Dashboard > Saved Workbooks >

Race-Gender-Age workbook

Version: Version 2

Build: HG38
this is an untitied workbook with all variables of variable favorite list "Race-Gender-Age" added to the first worksheet. Click Edit Details to change your workbook title and description.

Worksheet1 +

N .
Source Data Analysis Type Plot Settings x
Genes & miRNAS + Bar Chart X Axis Variable
Variables. Race v

Race

Gender hd < * - Plot By

PTeATETES Please select the Lul Edit Plot Settings option above to change the settings 1o produce a plot. Cases N
Cohorts + Cohorts

BRCA-TCGA and BRCA- 800,

CCLE # BRCA-TCGA and BRCA-CCLE

700 Update Plot

600)
500

400|

mber of Cases

_images/WebApp-MenuBar.png
e\SB—CGC Dashboard Data Browsers » Resourcesv Documentation About Help + Deena~ X Menu

WORKBOOKS ~ PROGRAMS ~ ANALYSES ~ GENES&MIRNAS ~ VARIABLES ~ COHORTS ~

_images/WorkflowWithGCSFUSE_1.jpg
!DS, = globiwildcards('/home/thinhivo/testhsfuse/(sample}.bam"ﬂ
#this rule determine which is the output of this workflow
rule all:

input:
"final/final gc stats out.txt"
#this task use sammtools to produce stats from bam files
rule samtools_stats tool:
input:
"/home/thinh vo/testGcsfuse/{sample}.bam"

_images/WorkflowWithGCSFUSE.jpg
Opening GCS connection...

Opening bucket. ..

Mounting file system...

File system has been successfully mounted.

_images/YourFirstWorkflow_1.png
(base) thinh_vo@kv—test—snakemake:~/rnaseq—snake$ conda activate tutorial
(tutorial) thinh_vo@kv—test—snakemake:~/rnaseq—snake$ |:|

_images/WorkflowWithGCSFUSE_2.jpg
(base) thinh_vo@kv—test:~$-cd testGesfuse/
(base) thinh_vo@kv—test:~/testhsfuse$ jlis]
G27328.Calu-6.1.bam

_images/all_tcga_jaccard_by_pathways_log_counts.png
10
s
5
4
2
o

TCGACOAD

TCGA VI
TCGABRCA
TC3ALG6

T6GA0V;

1C3ATUAD
TeaALCEC
TCaATNSC
1C3ASTAD
TCGASKOM
TCGAPARD
TCaAGEN
| TCGAPRAD
163aBLCA
TCaALUSC
TCRALINC
TCaASARC
TCGAREAD

TeaaDLEC

TC3ATESCA
TeaALCS
TCaATHCA
TCGAKICH

| TCGAMESO
TC3ATESC
TCGAKIRC
TCGAKIRD
TCGALAML
Te3aAce
TCaAPCRG
TeaATGCT
TeaACHOL
TeaATHVM

ToaaTHYM

_images/YourFirstWorkflow_2.jpg

_images/TopAnnotated.png
Your Dashboard

Saved Workbooks (0)

Workbooks store the Analyses you create — and their related data.

‘ Use this link to create a new Workblook

Saved Cohorts (0) Gene Favorites (0)
YYou don't have any saved Cohorts. YYou don't have any saved Gene Favorites.

Create Gene Favorites

Variable Favorites (0)
Use this link to start a new Cohort You don't have any saved Variable Favorites.
Create Variable Favorites | e
_ Use tl k to create new Variables
Favorites
Saved Projects (1) Public Data (2)
You can upload from your own research projects Browse publicly-available studies and data
Mouse Cancer Project

Mouse Data to compare to TCGA

& Upload Project Data

_images/ToolsForISBCGC.png
ISB-CGC WebApp

Google BigQuery e

Google VMs

_images/Variables_selected_genes.png
Your Dashboard > Saved Variable Favorites >

Create Variable Favorite Cancel

Name of Favorite (Required)

My new favorite variable

COMMON ~ FAVORITES(0) CLINICAL ~ MIRNA Selected Variables Clear All
~ MOUSE CANCER PROJECT | MOUSE GENE EXPRESSION Select your favorite variables from the left panel
() Gene Expression Tmem168 Mouse Gene Expression: Gene Expression Fos X

) Gene Expression Cd3g
[0 Gene Expression Itih3
) Gene Expression Ryr! Mouse Gene Expression: Gene Expression Lefl

Mouse Gene Expression: Gene Expression Gfil x

) Gene Expression Ints7

Mouse Gene Expression: Gene Expression Sox3 x
Gene Expression Traf4

» MOUSE CANCER PROJECT | MIRNA DATA|

» MOUSE CANCER PROJECT | RPPA DATA|

_images/gc_content_final_output.png
Read count

150000 -

100000 -

50000 -

25

50
GC content

75

100

_images/gene-scatterplot.png
loolEPM KIRC)

og(FPKM KIRP)

_images/gene-exp-dataframe.png
A dataframe: 6 x 687

TeGA- TGGA- TCGA- TGGA- TGGA- TCGA- TGGA- TCGGA- TCGA- Teoa-
gene name KIRPTCGA- KIRCTCGA- KIRCTCGA- KIRCTCGA KIRCTCGA. KIRCTCGA- KIRCTCGA- KIRCTCGA- KIRCTCGA- - KIRRTCGA-
UZASPS (25467 Ch48Bs CWSSE3 AK3436 CW-6090 BOSOB0 BP-4338 BP-51BA 1AABIW

<> <dbl> <dbl> <dbl> <dbl> <dbly <dbl> <dbl> <dbls <dbl> - <dbl>

1 ABLT 18839154 13204200 1770270 19036732 601492 12005264 21834568 0709215 ISTHIOTE - 14330578
2 ACAGA ea3l6 3SEO6ST 2204005 2643183 61079 2372528 3218430 3012670 1831968 2524890
3 AGACE 2003110 ABOTOSS 244274 ABITME 2442785 3457200 lABSME AGBAS1 2136174 2915340
4 AQRLI 2060649 154082 26626668 19232005 TISIIOET 10714130 44200805 6756663 21674077 7a13am
5 ADAR 20146091 35703638 AISETZS 44842105 22106074 36STION 34015421 26103323 080 - 256781
6 AT so272 1007956 9579650 1I0ATE3R 532068 6572360 1208015 8713414 11347751 92mie2

196687

_images/jan_fig2_diffs_vs_ts.png
T statistic

1.25-

1.00-

0.75-

0.50-

0.25-

0.00-

s

abs(tstat)
60

40

20

_images/jan_fig1_tstats.png
0.09 -

>
£ 0.06-
[
(]
©
0.03-
0.00-
. 40

-40

0
T statistic

_images/jan_fig4_scores.png
@® «———— Retinoblastoma (RB) in Cancer

® «— DNA Replication
80 -

@ <+—— CellCycle

n_genes
@ 100
@ 200

0.0 0.1 0.2 0.3 0.4
average absolute mean expression difference

_images/jan_fig3_results.png
Row

N o o s e N o

pathway
Retinoblastoma (RB) in Cancer
DNA Replication
Cell Cycle
Eukaryotic Transcription Initiation
Glycolysis and Gluconeogenesis
mIRNA Regulation of DNA Damage Response
DNA Damage Response

wil
WikiPathways_20170410
WikiPathways_20170410
WikiPathways_20170410
WikiPathways_20170410
WikiPathways_20170410
WikiPathways_20170410
WikiPathways_20170410

n_genes
85
4
%
37
47
70
68

avgAbsDiff
0.09074099343631607
0.09638722991485915
0.08078487275431012
0.046661555931630155
0.13334847972415492
0.0845097431877511
0.0855182772416452

score
100.5866566713379
87.29008922117913
62.98593883820528
55.004553246277034
54.94265001824355
53.20074037522477
53.194501760511152

_images/june_fig1.png
Buckets / daves-cromwell-bucket

Name Size Type

bamfiles.txt 312B text/plain

bamfiles/ - Folder

_images/jan_results.png
corr

1.0-

0.5-

0.0-

CN and Expr correlation in BRCA

0.0

corr_cn_gexp

0.5

1.0

_images/june_fig2.png
Buckets / daves-cromwell-bucket / cromwell-execution

Name Size Type

[0 gcStats/ — Folder

0 wf_hello/ — Folder

_images/cluster_working_fig.png
3 instances selected

PERMISSIONS MONITORING LABELS
Resetzoom || _th | 6h | 10 | 7d | 30d
CPU
%CPU 0ct 23,2018 10:31 AM
120%
100%
0%
0%
a0
20%
o
s 10aM 1015 1030

@ CPU (sbdataproccluster-oct16m): 1.78%
© CPU (sbdataproccluster-oct16-w0): 82.52%
@ CPU (isb-dataproc-cluster-oct16-w-1); 99.98%

_images/changes_on_the_vm.png
& Dataproc & Cluster details
Clusters @ isb-dataproc-cluster-oct16
Joba Overview Jobs VM Instances
Name

@ isb-dataproc-cluster-oct16-m
@ isb-dataproc-cluster-oct16-w-0

@ isb-dataproc-cluster-oct16-w-1

SUBMIT JoB

Configuration

Role

Master

Worker

Worker

ssH

CREFRESH @ DELETE VIEW LOGS

& https://ssh.cloud.google.com/projects/isb-cgc-

Ithe programs included with the Debian GNU/Li
lthe exact distribution terms for each progra

lindividual files in /usr/share/doc/*/copyrig

Debian GNU/Linux comes with ABSOLUTELY NO
fbernitted by applicable law.
dgibbsei sb-dataproc-cluster-oct16-z

_images/correlation_btw_hg19_hg38_v3.jpg
Pearson correlation between
hg38.a.expFPKM and hg19.normalized_count

count

108+

Pearson correlation between

hg38.a.expFPKM and hg19.normalized,

7315 13402 19951

0 5000 10600 15000 20000
> 20K genes sorted by correlation value

_images/console_top.png
Google BigQuery X ©) Home - ISB-CGC workshe X

C # |8 httpsy/console.cloud.google.com/home/dashboard?project=isb-cgc-04-0030

ﬁ Home Dashboard

_images/data_frame_output.png
In [15]:
data_frame. shape

out(15]: (33, 3)

In (16]: data_frame

Out[16]:
project short name M_count F_count

0 TCGA-UCEC 0 s

1 TCGA-CESC o a7

2 TCGA-OV o ser

3 TCGA-UCS 0 57

4 TCGA-BRCA 12 108

5 TCGA-GHOL. 20 25

6 TCGA-DLBC 22 2%

_images/correlation_matrix.jpg
0.2

0

_images/egfr_hg19_vs_hg38_ranked_v2.jpg
Rank HTSeq hg38

EGFR, hg19 vs hg38, Spearman’s

Rank RSEM hg19

0.96

_images/data_stored_in_shards.png
& Bucket details 2" EDIT BUCKET

qotm_oct_20182018-10-23-17-18-52

Objects Overview Permissions Bucket Lock

Upload files ~ Upload folder = Create folder =~ Manage holds

Filter by prefix...

Buckets / gotm_oct_20182018-10-23-17-18-52

Name Size Type Storage class
0 shard-0/ — Folder -
0 shard-1/ — Folder -
[0 shard-10/ — Folder -
0 shard-11/ — Folder -
0 shard-12/ — Folder -

C REFRESH BUCKET

Delete

Last modified

Public access

Per object
Per object
Per object
Per object

Per object

_images/feb_screenshot1.png
ISB-CGC Query of the Month, Feb 2018

This plot shows gene-gene correlations for a set of genes given by the selected
pathway. The correlations can be filtered using the correlation threshold siider.
BioCircos links can be Moused-Over to display the gene pair and correlation
value. Aiso, it's possible to zoom in on portions of the circos plot by double
clicking. Try searching the list of pathways by selecting the pathway drop-down,
hitting delete and typing a search term.

Pathway
CELL GYGLE CHECKPOINTS (291 genes) -
Cohort
TCGA-LUSG -

random number of genes
o

correlation thershold
o .
g T T T T T T T
o o a2 e o5 o8 o7 o8 0o 1 geneA
‘Submit after selecting pathway and cohort HIST1H4H
PSMAG6
SPC25
Packages used: BioCircos, bigrquery
Data used: Reactome pathways, TCGA hg19 RNAseq UNG RSEM SPC25
SPC25
CENPO
HIST2H2BE
RFC4
SKA1
SPC25

chrA

chr6.

chri4

chr2

chr2

chr2

chr2

chrt

o3

chrig

chr2

startA

26277609

35278633

168834132

168834132

168834132

24793136

149842204

186789880

50374995

168834132

geneB
HISTIH2BE
PSMA3
CDC25C
sGoLz
PSMD14
BRIP1
HISTIHAH
PSMD2
RFCS
RFC3

chrB

chr6.

chri4

ohrs.

chr2

chr2

chrt7

chr6.

o3

chri2

chrt3

startB

26172059

58244831

138285265

200510008

161308038

61681266

26277609

184298709

118013588

33818049

‘spearmans

072

0.70

0.66

063

061

059

059

058

058

057

Item
number of edges shown:
number of edges total:

number of genes shown:

number of genes total:

Count
206
1059
7

91

_images/egfr_hg19_vs_hg38_v2.jpg
Log10 HTSeq hg38.

EGFR, hg19 vs hg38, Pearson’s = 0.93

Log10 RSEM hg1o.

_images/brca_vs_stad_heatmap_3.png
A4SA-01A

Teccatats
=555

AS22979 g
TORAS LSS

CGA-A2-A4RW-01A

-A4H3-01A
44U-01A
D-A487-01A
D-A4MH-01A
-A4BF-01A

-BR-A453-01A
-BR-A4CS-01A

'CGA-HN-A20B-01A

C
CGA-HU-
C

GOA
CGA-
CGA-
CGA-|

~ StudyA

A e

I

1 TCGA-D7-A4Z0-01A

Hdddd-
Q9900Qq

A-DB-A4Z1-01A

GA-GM-A4E0-01A

A-CD-A4AMI-01A
A-CD-A489-01A
A-BR-A453-01A

GA-BR-A41U-01A

A-D7-A4YU-01A
3A-BR-A4CS-01A
A-HU-A4GY-01A
A-HU-A4GJ-O1A

A-CD-A487-01A
A-CD-A486-01A
A-D7-A4YX-01A
A-HU-A4GN-01A
A-F1-A448-01A
A-HU-A4H4-01A
A-HU-A4HD-01A
A-HU-A4G3-01A
A-HU-A4HB-01A
A-HU-A4HB-01A
A-D7-A4YT-01A
A-HU-A4H3-01A

SIS S>3

oo

5oF
bbb bR
g
g
>

>
)

P e e e e e e e e e e B e e] P e e]
QQQQQARRNNNNNNNAAAAARARNARRNNNNNAAAAAAANNANNNNNANAAAAAARAARNNNNNNAAAAAAAARARARNNNNNAAAAAANNNNNNNAAAA

GA-EQ-ASFL-01A

A-LL-ASYO-01A
A-OL-A5S0-01A

GA-BR-A44T-01A

A-AT-A4SF-01A

GA-A2-A4RY-01A

A-AC-ASEI-01A

GA-A2-A4S2-01A

A-AC-A5XU-01A

GA-EQ-A54X-01A
GA-AR-A5QM-01A
GA-AR-A5QP-01A
GA-AR-A5QN-01A
GA-A2-A4S3-01A

A-AQ-AS4N-O1A
A-AT-A4SC-01A

_images/DataAccessPanel.png
& Data Access

© dbGaP Access Authorized

Congratulations '
You now have access to the following ISB-CGC controlled datasets:
Dataset D puca
Z 1CGA PNS000178 & View
7 TARGET PNS000218 View

© Access Valid Unti
Tue Aug 18 2020 22:05:13 GMT-0400 (Easter Daylight Time)

Controlled access period can be extended to 24 hours from now.

% Account is Linked
is linked to NIH identity’

_images/DataBrowser-noSignIn.png
O\sarcsc Data Browsers ~ Resources~ Documentation About Help ~ #Sign In

Cancer Data File Browser

Al Files Pathology Images Pathology Reports Radiology Images G

The maximum number of file records which can be downloaded is 65000. Your selections currently total 443293. If you download the list now, it

HG19 v will be arbitrarily cut off afer the maximum. Please consider using the filter panel to the left to limit the record count. Once you have logged in,
you can register a Google Cloud Project and BigQuery Dataset, and export the file record list to a BigQuery table.

File Listing -

Showing 1 to 25 of 443293 entries

ennes page |][[+ (2151 B2

» CASE

» PROGRAM NAME

» DATATYPE

» DATACATEGORY Show
Choose Columns to Display ~
» EXPERIMENTAL STRATEGY

Program Case Barcode File Name Disease Exp. Platform Data DataType Data File Size
~ Code strategy category Format
» DATAFORMAT
CCLE VM-CUBT G30630VM-CUB13bam BLCA RNASeq llumina Raw Aligned BAM 56GB
» PLATFORM [GDC ID: dcd48648-8010 HiSeq sequencing reads
data
» DISEASE CODE CCLE SW780 G30608SW_7801bam BLCA RNASeq llumina Raw Aligned BAM 2668
[GDC ID: 9bd563b0-29cc- HiSeq sequencing reads
data
CCLE BFTC-905 G2731MBFTC-9051bam BLCA RNASeq llumina Raw Aligned BAM 154GB
[GDC ID: 5d0a2439-5423. HiSeq sequencing reads
data
CCLE T24 G27289.T24.1 bam BLCA RNASeq llumina Raw Aligned BAM 13968
[GDC ID: cfc33995-092a- HiSeq sequencing reads
data
CCLE RT-112 G27264RT-112.1bam BLCA RNASeq llumina Raw Aligned BAM 13368

AR P A AFAEGS e Can e e

_images/DataAccess-24hours.png
& DataAccess

Obtain controlled access for 24 hours.

& Get Controlled Access

% Account is Linked
is linked to NIH identity

€S Unlink

_images/DataAccess-WarningMsg.png
WARNING NOTICE

You are accessing a US Government web site which may contain information that must be protected under the US Privacy Act or other sensitive information and is intended for Government authorized use only.

Unauthorized attempts to upload information, change information, or use of this web site may result in disciplinary action, civil, and/or criminal penalties. Unauthorized users of this website should have no expectation of privacy regarding any communications or data processed by this website.

Anyone accessing this website expressly consents to monitoring of their actions and all communications or ata transiting or stored on related to this website and is advised that if such monitoring reveals possible evidence of criminal activity, NIH may provide that evidence to law enforcement
officials.

You are reminded that when accessing controlled information you are bound by the dbGaP DATA USE CERTIFICATION AGREEMENT (DUCA) for each dataset.

& Personal Details & Data Access o & Google Cloud Platform

Name © bGaP Access Authorized Google Cloud Credits
Email congrauiaons : i’:ﬁ.‘i :r Cloud Credits and your own Google Cloud Project by submitting a
LastLogin Mon Aug 17 2020 22:04:42 GMT-0400 (Eastem Daylight Time) YYou now have access to the following ISB-CGC controlied datasets:
Subscription N/A # Edit Dataset ° puca Google Cloud Console
@ TCGA phs000178 @ View Access a user friendly, integrated Google Cloud Platiorm management console
 TARGET phs000218 View
Google Cloud Projects
© Access Valid Until Utiize your own Google Cloud Projects resources by registering them here.

Tue Aug 18 2020 22:05:13 GMT-0400 (Easter Daylight Time)

Controlled access period can be extended to 24 hours from now.

is linked to NIH identity’

_images/DeleteServiceAccount.png
Project Name Project ID Registered Service Accounts # Storage Buckets # BigQuery Datasets

v isb-cgc-06-0007 & isb-cgc-06-0007 v1 2 2

Service Account Authorized Datasets Date Last Activated

366178009820-compute@developer.gserviceaccount.com All Open Datasets, TCGA Controlled Access Data, TARGET Controlled Access Data Nov 30, 2017, 12:38 p.m. &

_images/ExperimentalStrategy-filter.png
Experimental Strategy

ARRAY

RNASEQ
RPPA

_images/DataStorageOnISBCGC.png
]

raw data
fastq, bam,
image files, etc

_—
'_I:

tabular data
clinical, molecular,

4

reference,
metadata

_—

I

Google Cloud
Storage

Google BigQuery

_images/DataType-filter.png
Data Type

| PROTEIN EXPRESSION % ||

Bl ECIME! PPLEMENT i

CLINICAL DATA
CLINICAL SUPPLEMENT
COPY NUMBER SEGMENT

COPY NUMBER SEGMENT
MASKED

DNA METHYLATION
FILE METADATA
GENE EXPRESSION
GENE ONTOLOGY

_images/Expression-dataframe.png
project short_name
<chr>

TCGAKIRP
TCGAKIRC
TCGAKIRC
TCGAKIRC
TCGAKIRC

TCGAKIRC

case barcode gene_name

<chr>

TCGA-UZ-ASPS

TCGA-CZ-5467

TCGA-C-4886.

TCGA-CW-5583

TCGA-AK-3436

TCGA-CW-6090

<chr>

CTNNAT

PYGM

SDHE

cag

KM

SDHE

mean_gexp
<dbl>

9341217

049243

2718014

16215654

30569375

4279914

mean_pexp
<dbl>

009747864

024800379

007058236

020347070

102044110

055778735

_images/OsimisZoom.png

_images/GCP-AI-Platform.png
Get started B Notebooks £2 Model training

Label your data Find a notebook on Al Hub Train with a built-in algorithm

Learn more about custom

Find Al assets on Al Hub View notebook instances
models

with Kubeflow Learn more about notebooks Learn more about training

Train with AutoML
beling
ipeline

Notebook ™m

aining and prediction jobs Online prediction traffic

Models

No recent jobs All deployed model versions

Learn how to start a job

Model versions

No models

Prediction

Learn more about model
deployment

Learn more about prediction

Use a pretrained API

1.0/
0.8/s

0.6/

A Nodata is available for the selected time frame

0.4/

0.2/s

_static/up.png

_images/PinnedProject.png
Google Cloud Platform

EIXEEEY et up billing to upgrade to the full BigQuery experience. Learn more

@ BigQuery @ FeaTuRessiNFo [sHoRTCUTS

Query history Query editor

Saved qu

1

Job history
Transfers
Scheduled queries
Bl Engine

Resources. + ADD DATA v

Q search for your tables and data:

1s

~ algebraic-argon-207915

bigguery.public data

LSV uPGRADE

[HIDEEDITOR {1 FULL SCREEN

savevien || @ Schedule query ~ | [8 More ~

3 CREATEDATASET F UNPIN PROJECT

Datasets and tables available

Use the Resources tree to view your data, or create a new dataset using the controls above

_images/PinAProject.png
Pin a project

Select a project from the list below to add it 1o the Resources tree. It will be pinned
for easy access going forward.

Enter a project name

istrogel

Search for a project

Selecta project

_images/RefreshServiceAccount.png
Project Name Project ID Registered Service Accounts # Storage Buckets # BigQuery Datasets

v isb-cgc-06-0007 & isb-cgc-06-0007 v1 2 2

Service Account Authorized Datasets Date Last Activated

366178009820-compute@developer.gserviceaccount.com All Open Datasets, TCGA Controlled Access Data, TARGET Controlled Access Data Nov 30, 2017, 12:38 p.m. @m

_images/Program-filter.png

_images/OsimisRotateLeft.png

_static/minus.png

_images/OsimisRectangleROI.png

_static/file.png

_images/OsimisSingleVP.png
(o] [V Ao
jr

| W

_images/OsimisRotateRight.png

_static/plus.png

_images/OsimisViewportButtons.png
"0 Q % O 0 ~

<

® 0 0o 9 ¢

n

_images/OsimisThumbnailList.png
(dropa sreshere)

i W

_static/up-pressed.png

_images/AccessingBigQuery.png
com ¢ Lol =)

/' CUSTOMIZE

I APIs H & Google Cloud Platform status

Requests (requests/sec) Al services normal

- Goto Cloud status dashboard

000
ootes .
@ Error Reporting H
¢ e oote0 No sign of any errors. Have you set up Error Reporting?
0oiss
s 120 a5 2o > Leam how to set up Error Reporting
Requests: 0017
: > Goto APIs overview EZ News H
Jpources Firebase Unity Solutions: Update game behavior without deploying
with Remote Config
10 minutes ago
Got microservices? Service mesh management might not be enough
2hours ago
he past 7 days Howto set up a new Chromebook
2hours ago

- Readallnews

B Documentation

Learn about Compute Engine

Learn about Cloud Storage

bata Fusion gto a running application
Learn about App Engine

enomi ror Reporting

_images/AccountDetails.png
OISB{G(Dashboard Data Browsers ~ Resources~ Documentation About Help ~ o - =Menu

& Personal Details & Data Access (] & Google Cloud Platform

Name Apply for dbGaP Authorized Access to access underlying Level 1 genomics data Google Cloud Credits
Associate your account with your eRA Commons Account Apply for Cloud Credits and your own Google Cloud Project by submitting a

Email
% Associate with eRAAccount request.
LastLogin Mon Aug 17 2020 13:24:48 GMT-0400 (Eastern Daylight Time) 5 Leam tore [Request Credits]

Subscription N/A #* Edit Google Cloud Console
Access a user friendly, integrated Google Cloud Platiorm management console

Google Cloud Projects
Utilize your own Google Cloud Projects resources by registering them here.

_images/4gene_roc.png
Rosults Dotalls .

Row precision recall accuracy f_score log_loss roc_auc
1 07636363636363637 0.6923076923076923 0.8854041013268998 0.7262247838616714 0.26973732767854014 0942319

Table | JSON

_images/Access-filter.png
Access

Al
Al
Open Access

Controlled Access

_images/AddDataBox.png
00 < [in]

console.cloud.google.com <

Google Cloud Platform

EIXEEEY et up billing to upgrade to the full BigQuery experience. Learn more LEVE UPGRADE

@ BigQuery @ reaesano B suomrours

Query history Query editor [HIDEEDITOR [3 FULL SCREEN
Saved queries

1
Job history

Transfers

Scheduled queries

Bl Engine

Resources + ADD DATA v

Q search fo

Pin a project

- algebraic-argonEXPIOTe pUblc datasets
Create connection

» bigquery-public . X & soeovey

saveview | (© Schedulequery v | %% More ~

B3 CREATEDATASET F PIN PROJECT

Datasets and tables available

Use the Resolirces tree to view your data, o create a new dataset using the controls above

_images/GEN3-DCF-RAS.png
GEN

Data Commons

Data Commons Framework Services

Authorize 1ISB-CGC to:

Know your Google and NIH and Ras basic account information and what you are authorized to access.

Retrieve controlled-access datasets to which you have access on your behalf.

Allow registration of external Google service accounts to access data.

Allow providing your personal Google account access to data on Google.

Cancel ‘ authorize.

_images/GTEx_TCGA_corr_LIHC.png
TCGA-LIHC H

0.8-
[
s o o °* ¥) ‘ ° ® L L S 1)
e © o o) o [J
B R o] tgf BEtefiis g, ba°ss o
[J [
s ! i ity s, V11,0174 RENE
(] l s (] i ’ ° - s
_ 06- o s + | H
5 s §
; ted i, 00
sdgrseltd { H ~ u HH H H
8
rarte) - : I
0.4- E H
0.2-
Iel\g:blﬁ L\ N2 @ F N @ Q.20 N\ @ @ o PO AL ALNDLLS L@ P oL
O o o S P N R S s N B R o e e P 5o
@ &2 Sy QIO NLEL Mot Pl P RS EL s SIS 2 QRN @ 3
B I P AN XA R O **“
o7 @ ¥) SNPRENC N N NS S R R @
. Qe} ?g\ ‘b{br‘b@ ‘@\Q}\ @ &'fb‘\(\ D Qé s @rb 6\@ \060 QJQ\ N N\ OG.)@ & 2
& NG O \ SO SN
) RS Q‘@Q;'b‘)ro‘(\.’b#\é‘é\OQ @'&Q’%\\
- . BN ® ® & R Q&@Q\Q‘é @rb @Q ««b s S < &
e{\ & (‘b\{\ Q)\ efbc’.\{\ RN Q)Q)A Q}\6 0\%'\{\ ,&\
Fa? Yol os@ < S A
2 Rl . N .
. \\6 rbo.) Q&
S @ § S
N o 9
@ O {O%
&°

GTEx_tissueType

_images/GCP-R-Notebook.png
& > C & 170c89a71f8a70dc-dot-us-west1.notebooks.googleusercontent.com/lab/workspaces/auto-97authuser=0 * o@ e @O

File Edit View Run Kemel Git Tabs Settings Help
+ ES c 3 = Untitled.ipynb X | [isb-cge-demo.ipynb
-/ B+ XTO 0 » m C Cde v O gt
Name - Last Modified
sql < "Select case barcode, age_at_diagnosis, project_short_name, clinical_stage

L 2 days ago from " isb-cgc.TCGA_bioclin_ve.Clinical® clin

™ wtorials 2 days ago where project_short_name like 'TCGA-KIRSs

B bcomemo i) Bhoie ag0 data <- query_exec(sql, project = project, use_legacy sql = FALSE,nax_pages = Inf)
* A Untitled.ipynb a minute ago

head(data)
A data.frame: 6 x 4
case_barcode age_at_diagnosis ~project_short name _clinical_stage.

G # #» ¢ 0 ®r O

<chr> <int> <chr> <chr>

1 TCGA-2K-AOWE TCGA-KIRP NA
TCGA-22-A9U1 TCGA-KIRP Stage |
TCGA-22-A9U2 TCGA-KIRP Stage |

TCGA-22-A9U5 TCGA-KIRP Stage Il

2
3
4 TooA-22-A913 TCOA-KIRP Stagel
5
6

TCGA-22-A9U6 TCGA-KIRP Stage |

&

Age at Gagnosis

TCGAKIRC

oMe6 @ Rllde Mode: Command @ Ln1,Col1 isb-cgc-demo.ipynb

_images/GDC-KidneyExample.png
QQuickSearch ~ Manage Sets 4] Login = Cart [

NATIONAL CANCER INSTITUTE & tHome T Projects
GDC Data Portal

Files | Cases «

Add a Case/Biospecimen Fiter

v Case [>]
™ Add Al Fik (2 Browse Annotations

Q eg. TCGAA5A0G2, 432fedad-2

v Case ID Primary Site Project Data Category Data Type Data Format
eg. TCGA-DD", "DD*, TCGADD-AAVP | Gol
~ Primary Site Qo
0 ovary
O brain 2 Show More
O breast 151
‘Showing 1 - 20 of 2,332 files = Json || 1sv
[bronchus and lung
8 copus uten B 1~ Access File Name Cases Project Data Category Data Format File Size Annotations
= &open 16b03621.9205-49dc GeDe BecTaOffciBs FPKM-UQ ixt.gz 1 TCGAKIRP Transcriptome Profiing 'y 517.98 KB 0
31 More
=/ &open 1C5h055T-cdb1-4c96-a912-513b43e6a99a FPKIM. 07 1 TCGAKIRC Transcriptome Profiing T 539.07 KB o
Program v | |®| @controled bibbbab-a630-4561-6503-94b0c364478¢_gdc_realn_rehead bam 1 TCGAKIRC ~ Sequencing Reads BAM 654GB o
@ TCGA =/ &open a73b7250-3437-4279-b3e1-12dd3107b31C htseq.counts. gz 1 TCGAKIRC Transcriptome Profiing T 255.43K8 o
) arcer g T &open DEBUT_p_TCGAD45_81_wRedosSNP_N_GenomeWideSNP_6_G11_729492.nocnv_grch38.seq.v2.txt 1 TCGAKIRC Copy Number Variation 'y 663KB o
o epmac o = &open SITUS_p_TCGADS0_SNP_N_GenomeWideSNP_6_D10_650060.grch38.seq.v2.txt 1 TCGAKIRC Copy Number Variation T 2093 K8 o
= &open nationwiidechildrens org_Clinical TCGA-BP-4335 xmi 1 TCGAKIRC ~ Clinical BCR XML 67.4K8 o
« Project = &open DADOS_p_TCGAD3_85_86_87_86_NSP_GenomeWideSNP_6_G02_1464762.0rch38.5eq.v2.1xt 1 TCGAKIRC Copy Number Variation T 37.37K8 o
) TCGAKRC = &open TCGA-BP-4335-01Z-00-DX1.95cacTed-483b-4007-8bbc-dcd0920cc342.5vs 1 TCGAKIRC Biospecimen svs 168 o
B = &open nationviidechildrens.org_Cclinical_follow_up_v4.0_sarc.txt TCGASARC Clinical BCR Biotab 6214 K8 17
[TCGA-KIRP B8
® @controlled TCGA-5P-A9K9-01A-11R-A42U-13_mima_gdc_reain.bam 1 TCGAKIRP Sequencing Reads BAM 179.03 MB o
) TCGAKICH
= = &open SPIKE_p_TCGA_B64_SNP_N_GenomeWideSNP_6_AQ6_697554.0ich38.seg.v2.1xt 1 TCGAKIRC Copy Number Variation T 2726 K8 o
] TCGA-SARC = Al B e i

_images/4gene_model_stats.png
Model Details: coad_vs_paad_expr_I1_I2

Training Run:

Dotails

Row.

© o N e oo n

lteration Trai

8

o ow s e e N

a8

Training Stats Schema

027
027
029
032
037
044
053
061
066

026
028
029
032
036
044
053
061
066

\g Data Loss _ Evaluation Data Loss Learn Rate Completi

640
2560
12.80
640
320
160
080
040
020

_images/Gene_Favorite.png
Your Dashboard > Saved Gene & MIRNA Favorites >

Create Gene & miRNA Favorite

Name of Favorite (Reqt

My BRCA Genes

Selected Genes & miRNAS (required) Clear All

Upload Gene and miRNA List

srcat - (BRGRIE) sRcA2 - BRATH BRCA3 « Enter your favorite gene or miRNA's name

© (@EREiE) Genes and miRNAS will be removed on submit

@ The following items Were not recognized as gene or MIRNA identifiers. You may either correct o delete these items or upload them as-is.

O Cancel View MiRNA Identifiers View Gene Identifiers.

_images/4gene_model_weights.png
Rosults Dotalls

Row processed_input

1
2
3
4
5

Table

CCNE

coce

MDM2

TGFA
INTERCEPT

JsON

‘weight
-0.7842583407600104
-2.2759546912451274

-0.015306280767606256

0.6158875549267074
-2.4112478267421085

category_weights.category category_weights.weight

_images/GenomeReference-filter.png
Reference Genome

HG19 v

ALL

HG38

_images/GTEx_TCGA_corr_SKCM.png
corr

TCGA-SKCM s ! | !

1 1
DL LD P PLDDN@ @20 F F 0P
,b“}\q“o S R ,bo“}\,boc}\,gc’ ,00\?{\%9 $ o~o\'bgoo° 000‘\.\@@09\\0\0&%\» A
X P AN I IS RIS SRS S oA P
& @ @ AN A QLS PN X
rboo,b&oé,QQQébébo@rb@\\‘o &R e KR
. < SO v, AN NSNS
S NOCRMSICY: Q:@@ib\«@o S F S E (‘;\"\q}& A
S80S E O (P2 o R @ %
O N PANPEN (@) 9 .
<K \®§%®¢\{\® & 5 &5 & O\o% SR HRE
& RVR Q’Q,\O &N > <«
PN SV o ©
o
S & N

GTEx_tissueType

_images/4gene_model_specs.png
Model Info
Model ID Isb-0go-02-0001:tcga_model_1.coad_vs_paad_expr_I1_12
Table Size 408
Creation Time Jul 30, 2018, 10:00:18 AM
LastModified Jul 30, 2018, 10:01:17 AM
Expiration Time Never Edit

DataLocation US

Model Type Logistc regression
Loss Type Mean log loss
Labels None Edit

Training Options

Max Allowed Iterations 20
Actual Iterations 9
L1 Regularization 1
L2 Regularization 1
Early Stop true

Minimum Relative Progress 0.01
Learn Rate Strategy Line search

Line Search Initial Learn Rate | 0.1

_images/GTEx_TCGA_corr_heatmap_median.png
© N~ © v < 3¢]
o o o o o o
e .
0] o]$) S A OO0 on=0nN
SBoeelzaosEa008s 0z, HR020082R03
—_— - = |
SOl ity lap Tl v ot kel e N Yo Te
CCCCCLCLC<LC<LC<LCLCLCLCCCCCLCLCLCLLCLLCLLCCLCLCLCCCCC<
(OIVIVIVIVIVIVIVIVIVIVIVICIVIVIVIVIVIVIVIOIVIVIVIVIVIVIVIVIVIOIV]
QOO0O0OO0O0OLOLOLOLOLLLOLOLLLLLOLLLLOLLLLOLOLO
e ey
ﬁ
!

ﬁu:'—;
T

Brain - Cerebellum

Brain - Cerebellar Hemisphere
Brain - Hypothalamus

Brain - Putamen (basal ganglia)
Brain - Caudate (basal ganglia)
Brain - Amygdala

Brain - Nucleus accumbens (basal ganglia)
Brain - Hippocampus

Brain - Substantia nigra

Brain - Frontal Cortex (BA9)
Brain - Cortex

Brain - Anterior cingulate cortex (BA24)
Brain - Spinal cord (cervical c-1)
Liver

Minor Salivary Gland

Lung

Stomach

Colon - Transverse

Small Intestine - Terminal lleum
Pancreas

Kidney - Cortex

Esophagus - Muscularis
Esophagus - Gastroesophageal Junction
Colon - Sigmoid

Nerve - Tibial

Artery - Coronary

Artery - Aorta

Artery - Tibial

Adipose - Visceral (Omentum)
Adipose - Subcutaneous
Adrenal Gland

Cervix - Endocervix

Cervix - Ectocervix

Uterus

Fallopian Tube

Ovary

Cells - Transformed fibroblasts
Breast - Mammary Tissue
Bladder

Prostate

Thyroid

Skin - Sun Exposed (Lower leg)
Skin - Not Sun Exposed (Suprapubic)
Vagina

Esophagus - Mucosa

Heart - Left Ventricle

Heart - Atrial Appendage
Muscle - Skeletal

Testis

Pituitary

Spleen

Cells - EBV-transformed lymphocytes
Whole Blood

_images/GettingStarted.png
Account Setup
Y

p—
p— —

Access Data

|-

|

Analyze Data

/

\

_static/comment.png

_images/OsimisPixelProbe.png

_static/down-pressed.png

_images/OsimisPick.png
Your Dashboard > Saved Cohorts > KIRC >

File Browser: KIRC

Al Files 6V

File Listing

‘Showing 1 to 25 of 439 entries

Show[253 |entries BEE e

Program A Case Barcode Disease Code Project Short Name.
TCGA TCGABP4782 KIRC TCGAKIRC
TCGA TCGACW-5585 KIRC TCGAKIRC
TCGA TCGABP4170 KIRC TCGAKIRC
TCGA TCGACW-5583 KIRC TCGAKIRC

‘Study Description

CT ABIPEL KIDNEY PROTOCOL.

‘Thorax"04_0_CAP_Routine (Adult)

MR ABDOMEN W/WO CONTRAST

abl5589

Pathology Images Radiology Images

‘Study Instance UID

1.3.6.1.4.1.14519.5.2.1.9203 4004.2637418521685319424817176 12441

1.3.6.1.4.1.14519.5.2.1.3344.4004.218200237778435203197949246851

4.1.14519.5.2.1.9203.4004.105518038583473773135183648052

1.3.6.1.4.1.14519.5.2.1.3344.4004.192249555365413653578630974854

_images/OsimisPresets.png

_images/OsimisPlay.png
M 33 of 73 »

_static/down.png

_images/startscreen-nologin.png
o ISB-CGC DataBrowsers ~ Resources~ Documentation ~About Help + #Sign In
A RESOURCE OF THE NCI CANCER RESEARCH DATA COMMONS
ISB-CGC
Cancer Gateway in the Cloud
Access, Explore and Analyze Large-Scale Cancer Data Through the Google Cloud
Data Browsers
BigQuery Table Search Cancer Data File Browser Chromosomal

[zl Aberrations & Gene 9

Fusions DB g

Browse the Mitelman Database of

Explore a comprehensive selection of cancer
Chromosome Aberrations and Gene Fusions in

Browse BigQuery tables of metadata and
related data files in Google Cloud Storage

molecular cancer data from the Genomic Data
Commons and other sources. Jump directly to a Buckets, such as raw sequencing, cancer Cancer which relates cytogenetic changes, in

table to perform discovery and computation via nucleotide variation, pathology or radiology particular gene fusions, to tumor
sQL. images. characteristics.

o o
Launch

Launch Learn Launch

Resources

Controlled Access Data

Notebooks

A collection of notebooks written in R and

Pipelines and APIs :

Learn more about how to access and analyze

Cohort Builder / Data
Explorer 8‘%8

Aweb interface to build cohorts based on Sign in to access controlled-access data on the

clinical demographics and molecular filters.
Compare patient cohorts with various
exploration tools including 1GV viewer. image

cancer data through programmatic interfaces
including Google Cloud virtual machines and
APls.

Python, to serve as both tutorials or analysis
tools for a range of users; includes
reproductions of Resulome Explorer

Google Cloud. Authenticated users with proper
dbGaP authorization only.

_images/spark_input_table.png
Save as table

Destination project Destination dataset

ISB-CGC-02-0001 v spark_job

Destination table

spark_input

Advanced options v

CANCEL SAVE

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_images/GCP-Notebooks.png
Al Platform

Dashboard

Al Hub

Data Labeling

Pipelines

Notebooks

Jobs

Models

Notebook inst...

Filter table

Instance name

bigquery-

Customize instance

R3.6
R 3.6 and key libraries pre-installed

Python

Python 2 and 3 with Pandas, SciKit Learn and other key packages pre-installed

TensorFlow Enterprise 1.15
TensorFlow Enterprise 1.15 pre-installed with support for Keras

TensorFlow Enterprise 2.1
TensorFlow 2.1 pre-installed with support for Keras

PyTorch 1.4
PyTorch 1.4 pre-installed

RAPIDS XGboost [EXPERIMENTAL]
XGboost optimized for NVIDIA GPUs

CUDA 10.1
Optimized for NVIDIA GPUs

NEW INSTANCE C' REFRESH » START W STOP) RESET W DELETE SHOW INFO PANEL

(] |
GPUs Permission Labels
None Compute Engine default
v service account

_images/ISBCGC-BQ-projects.png
Google Cloud Platform

@ BigQuery ® FEATURES & IN

Query history
saved queries
Job history
Transfers
Scheduled queries
Reservations

81 Engine

Resources + ADDDATA +

Search for your tables and datasets

) isbcge

» isbcge-bg

_images/ISBCGC-BQ-tables.png
ORGANOID
ORGANOID_versioned

TARGET

EH miRNASeq_hg38_gac_current

[per_sample.file_metadata_hg19_gdc_current
[per_sample.file_metadata_ng38_gdc_current
R RNAseq_hg3s_gdc_current
TARGET.versioned

[E miRNAseq_hg38_gdc.r22

[per_sample.file metadata_ng19_gdc_r24
[per_sample.file_metadata_ng38_gdc_r24
[RNAseq_hg3s_gdc_r22

TCGA

TCGA_versioned

_images/IGVBrowserCrash.png
€ 1sB-cGC

« > cC

x | & rse-cac

X

@ isB-cocc x @ 1secec x| @ 1sBcac x| @ 1sB-c6C

@ isb-cgc.appspot.com/igv/

x | & rse-cac

x | & rse-cac

x| + =

&

Qa % Q o

Not enough memory to open this page

Try closing other tabs or programs to free up memory.

Learn more

Send feedback

_images/ISB-homepage.png
o ISB-CGC DataBrowsers ~ Resources~ Documentation ~About Help + #Sign In
A RESOURCE OF THE NCI CANCER RESEARCH DATA COMMONS
ISB-CGC
Cancer Gateway in the Cloud
Access, Explore and Analyze Large-Scale Cancer Data Through the Google Cloud
Data Browsers
BigQuery Table Search Cancer Data File Browser Chromosomal

[zl Aberrations & Gene 9

Fusions DB g

Browse the Mitelman Database of

Explore a comprehensive selection of cancer
Chromosome Aberrations and Gene Fusions in

Browse BigQuery tables of metadata and
related data files in Google Cloud Storage

molecular cancer data from the Genomic Data
Commons and other sources. Jump directly to a Buckets, such as raw sequencing, cancer Cancer which relates cytogenetic changes, in

table to perform discovery and computation via nucleotide variation, pathology or radiology particular gene fusions, to tumor
sQL. images. characteristics.

o o
Launch

Launch Learn Launch

Resources

Controlled Access Data

Notebooks

A collection of notebooks written in R and

Pipelines and APIs :

Learn more about how to access and analyze

Cohort Builder / Data
Explorer 8‘%8

Aweb interface to build cohorts based on Sign in to access controlled-access data on the

clinical demographics and molecular filters.
Compare patient cohorts with various
exploration tools including 1GV viewer. image

cancer data through programmatic interfaces
including Google Cloud virtual machines and
APls.

Python, to serve as both tutorials or analysis
tools for a range of users; includes
reproductions of Resulome Explorer

Google Cloud. Authenticated users with proper
dbGaP authorization only.

_images/MouseExisting.png
Your Dashboard > Saved Programs >

Data Upload

A NEW PROGRAM

Program Name

_images/MouseProjectAnnotated.png
ANEWPROGRAM ANEW PROJECT FOR AN EXISTING PROGRAM

Program Name

Mouse Cancer

Program Description (Optional)

Mouse data compared to TCGA data.

Project Name

Mouse Gene Expression

Project Description (Optional)

Gene Expression data sets.

Link For Data Dictionary

Data Upload

High Level File Selection ; Please refer to the system data dictionary @ for proper naming and data type conventions.

® High level data files File Type Formatting Requirements

Low Level File Selection Extends an existing program's project data |~ Selecta Program/Project~ v

% Low level files for APl access
File Type

lect File(S) / Click here 2 to view details of acceptable file types and formatting
Name Type

CosbxprssSalatidioNusi=y Gene Expression v | Double-check that your file its the expected format before continuing.

_images/IfYourScreenLooksLikeThis.png
Join Our Community

Let us keep you updated with our cloud-resources!

Would you like to subscribe to our mailing list?

Yes No Ask Me Later

_images/LinkNIHIDInstructions.png
Link’ to an NIH identity

You will now be sent to the Data Commons Framework (DCF) site to login to NIH and
then to link your NIH and Google IDs. This will take three steps the first time you do it

© On the NIH ITrust page, login with your NIH ID and password.
o Next, you must allow ISB-CGC to access your account information (click Yes, I

authorize)
Finally, you must login to the Data Commons Framework (i.e. datacommons io)
using your| Google ID.

If you are having problems with linking, you might try logging out of DCF before trying

again

RO Cancel

_images/ServiceAcctRegTable.png
Service Account ID

(@developer.gserviceaccount.com

*Note: you do not need to register a Service Account to use open access datasets.

Which dataset(s) would you like to use?
¥ TCGA Controlled Access Data
¥ TARGET Controlled Access Data

Verify Service Account Users

*This will allow us to verify who is allowed to use this service account.

Verification Results

@ The project, service account, and users were verified. The registration can proceed.

Google Cloud Project User ISB-CGC Registration and Identity Linkages:

User Email Registered Has NIH Identity

v v

Dataset Permissions Verification:

@ The requested dataset list [TCGA Controlled Access Data (phs000178), TARGET Controlled Access Data (phs000218)] was approved.
ID

Status Message
TCGA Controlled Access Data (phs000178) v
TARGET Controlled Access Data (phs000218) v

Registered Service Account Verification Results:

@ The requested service account " @developer.gserviceaccount.com” meets all requirements.

_images/SignInPage.png
& accounts.google.com

>

Google
Signin
to continue to Google Cloud Platform

|— Email o phone

Forgot email?

Not your computer? Use Private Browsing windows to sign
in. Learn more

English (United States) + Help Privacy Terms

_images/ServiceAcctRegTable2.png
Registered Service Account Verification Results:

@ The requested service account " @developer.gserviceaccount.com” meets all requirements.

Google Cloud Project Verification Results:

@ Google Cloud Project meets all requirements

@ All Google Cloud Project roles meet requirements. Roles are assigned to either service accounts or to users who have registered with the Data Commons Framework.

Google Cloud Project Service Account Verification Results:
ID
(@genomics-api.google.com.iam.gserviceaccount.com
@containerregistry.iam.gserviceaccount.com
@gcp-sa-websecurityscanner.iam.gserviceaccount.com
.iam.gserviceaccount.com

@cloudservices.gserviceaccount.com

@dataflow-service-producer-prod.iam.gserviceaccount.com
@compute-system.iam.gserviceaccount.com
iam.gserviceaccount.com
".iam.gserviceaccount.com

(@container-engine-robot.iam.gserviceaccount.com

Status Message

We have verified that your Google Cloud Project meets all requirements, and that all of the users in that project have permission to access the proposed datasets.

_images/SimpleSQLExample2.png
@ BigQuery @ FeATURes&INFO [sHoRTCUTS + COMPOSE NEW QUERY

Query history Query editor [HIDEEDITOR [FULL SCREEN
Saved queries 1wt
2 t1 S (
Job history 3 sELECT
4 project_short_name,
Transfers 5 sample_barcode_tumor,
6 Hugo_Symbol,
Scheduled queries 7 Variant_Classification,
8 Variant_Type,
Bl Engine 5 ster,
10 PolyPhen
Resources + ADDDATA v 11 FROM
12 "isb-cge.TCGA_hg38_data_v0.Somatic Mutation DR10™
Search for your tables and datasets 13 WHERE
14 Hugo_Symbol="KRAS"
15 GROUP BY
16 project_short_name,
) isb-cge b 3 m & savequery | i Saveview (O Schedulequery v £ More + This query will process 255.1 MB when . @)
Query results & SAVERESULTS v i EXPLORE WITH DATA STUDIO

Query complete (1.8 sec elapsed, 255.1 MB processed)

Jobinformation Results ~ JSON Execution details

Row n Hugo_Symbol Variant Classification Variant_Type ~SIFT PolyPhen

1 208 KRAS Missense_Mutation ~ SNP. deleterious(0) benign(0.361)

2 176 KRAS Missense_Mutation ~ SNP. deleterious(0) possibly_damaging(0.479)
3 94 KRAS Missense_Mutation ~ SNP. deleterious(0.04) ~probably_damaging(0.993)
4 76 KRAS Missense_Mutation ~ SNP. deleterious(0.04) ~possibly_damaging(0.506)
5 41 KRAS Missense_Mutation ~ SNP. deleterious(0.02) ~possibly_damaging(0.773)
6 37 KRAS Missense_Mutation ~ SNP. deleterious(0.03) ~ benign(0.376)

7 30 KRAS 3Flank SNP

8 24 KRAS Missense_Mutation ~ SNP. deleterious(0.03) ~possibly_damaging(0.644)
9 21 KRAS Missense_Mutation ~ SNP. deleterious(0) benign(0.371)

10 21 KRAS Missense_Mutation ~ SNP. deleterious(0.03) ~possibly_damaging(0.876)
11 18 KRAS 3UTR SNP

12 18 KRAS Silent SNP

13 15 KRAS Missense_Mutation ~ SNP. deleterious(0.02) ~ probably_damaging(0.997)
14 11 KRAS 3Flank DEL

15 10 KRAS Missense_Mutation ~ SNP. deleterious(0) probably_damaging(0.94)
16 7 KRAS Missense_Mutation ~ SNP. tolerated(0.06) benign(0.374)

17 7 KRAS Missense_Mutation ~ SNP. deleterious(0) probably_damaging(1)

_images/SimpleSQLExample1.png
@ BigQuery @ FeaUResaINFO [sHoRTCUTS + COMPOSE NEW QUERY

Query history Query editor [HIDEEDITOR [3 FULL SCREEN
Saved queries 1 sELECT
2 COUNT(DISTINCT(sample barcode tumor)) AS numSamples
Job history 3 FRoM
4 "isb-cgc.TCGA hg38_data_v0.Somatic Mutation DR1O™
Transfers 5 WHERE
6 Hugo_Symbol="KRAS"

Scheduled queries
Bl Engine

Resources + ADDDATA v

Search for your tables and datasets

: saveview (O Schedulequery ~ %% More ~

Query results & SAVERESULTS v & EXPLORE WITH DATA STUDIO

This query will process 87.2 MB when run. 9

Query complete (1.7 sec elapsed, 87.2 MB processed)

Jobinformation Results ~ JSON Execution details

Row numSamples

1 839

_images/Status-filter.png
status.

CURRENT v

ALL
ARCHIVED

URRENT

DEPRECATED

_images/Source-filter.png
AFFYMETRIX -

BROAD

CLINVAR

DBSNP

ENSEMBL

GDC

GENCODE

GNOMAD

GO

GTEX PORTAL A

_images/SKCM_Spleen_corrs.png
corr

0.80-

0.75-

0.70-

SKCM correlation with spleen tissue
A

A

N

0 50 100
Samples

150

200

metastatic
e FALSE
4 TRUE

_images/RunningWDLWithBam_5.png
—— scatter over Array|[String] as sample
call samtools_stats_tool

= scatter over File as statout =
call grep_tool
<= scatter over File as grepped

call cut_tool

_images/ServiceAcctRegSuccess.png
-

ISB-CGC-06-0007 isb-cgc-06-0007

Service Account

366178009820-compute@developer.gserviceaccount.com

-1 0

Authorized Controlled-Access Datasets

TCGA Controlled Access Data, TARGET Controlled Access Data

Current Access Expires

Dec 13, 2018, 12:25 p.m.

i +]

_images/SQLSimpleExample3.png
@ BigQuery @ FeATUResaINFO [soRTCUTS + COMPOSE NEW QUERY

Query history Query editor () HIDE EDITOR T FULL SCREEN
Saved queries 1w
2 t1 As (
Job history 3 SELECT
4 sample_barcode_tumor,
Transfers 5 Hugo_Symbol,
6 Variant_Classification,
Scheduled queries 7 Variant Type,
8 SIFT,
Bl Engine 9 PolyPhen
10 FROM
Resources + ADDDATA v 11 ~isb-cgc.TCGA_hg38_data v0.Somatic_Mutation DR10™
12 GROUP BY
Search for your tables and datasets 13 sample_barcode_tumor,
14 Hugo_Symbol,
15 Variant_Classification,
16 Variant_Type,
D B X m & save query saveview |~ © Schedulequery ~ %% More ~ This query will process 217.7 MB when run. @)
Query results & SAVERESULTS v i EXPLORE WITH DATA STUDIO

Query complete (15.8 sec elapsed, 217.7 MB processed)

Jobinformation Results ~ JSON Execution details

Row n Hugo_Symbol Variant_Classification ~ Variant_Type ~ SIFT

1 2977 TIN Missense_Mutation ~ SNP.

2 1488 MUCT6 Missense_Mutation ~ SNP.

3 1431 TIN Silent SNP nul nul

4 1022 TPS3 Missense_Mutation ~ SNP. deleterious(0) probably_damaging(1)
5 985 MUCT6 Silent SNP

6 949 PCLO Missense_Mutation ~ SNP. nul unknown(0)

7 892 TIN Intron SNP

8 659 MUC2 RNA SNP

9 583 MUCSB Missense_Mutation ~ SNP. nul unknown(0)

10 565 BRAF Missense_Mutation ~ SNP. deleterious(0) probably_damaging(0.967)
11 539 TPS3 Nonsense_Mutation ~ SNP.

12 535 DST Intron SNP nul nul

13 516 XIST RNA SNP

14 490 IGHG1 Intron SNP

15 485 RYR2 Silent SNP nul nul

16 475 HRNR Missense Mutation = SNP unknown(0)

_images/GraphingGraphed.png
Expression Fos

% Mouse Gene Expression: Gene
Expression Gfil

% Mouse Gene Expression: Gene
Expression Left

% Mouse Gene Expression: Gene
Expression Sox3

Cohorts.

% Mouse Genex cohort

Mouse Gene Expression: Gene Expression Sox3

600;

550

500,

450}

400}

350

300,

250}

200,

150)

100/

50|

00

50

200 250 300 350

Mouse Gene Expression: Gene Expression Gfil

Y Axis Variable

Mouse Gene Expression: Gene ¥

() Plot as logyo(n+)

Color By Feature

Cohorts.

@) Mouse Genex cohort

Update Plot

_images/GraphingStart.png
Untitled Workbook

Worksheet1 + %

« Plot Setti x
Source Data Analysis Type nos
Genes + X Axis Variable
Scatter Plot

Varlables + Mouse Gene Expression: Gene ¥
% Mouse Gene Expression: Gene [Plot as logg(n+1)
Expression Fos 4 Enable Sample Selection

Ll Edit Analysis Settings Tlswap Valu

% Mouse Gene Expression: Gene

Expression Gfil Y Axis Variable

% Mouse Gene Expression: Gene
Expression Left Mouse Gene Expression: Gene ¥

@ To Complete this Analysis: -
() Plot as logyo(n+)

% Mouse Gene Expression: Gene

T Sl « You must select an Analysis Type (above)

« You must select Genes or Variables (or, optionally, both) Color By Feature
Cohorts. + * Youmust select s Cohorts Mouse Gene Expression: Gene Ex ¥

X Mouse Genex cohort Resubmit Plot Cohorts.

@) Mouse Genex cohort

Update Plot

_images/Nextflow-RNAseq.png
refGenome

buildIndex

forRead /revRead

create_transcript

franscript_ch tsv_ch\ transcript_ref_ch

_images/Num-cases.png
214
472

_images/NewSignIntoGCP.png
© Cloud Computing Services | ¢ X =

C @ cloud.google.com % O @ O Paused @

O GoogleCloud ~ WhyGoogle ~ Solutions Products P Gettingstarted Contact sales Q_ Docs Support Language signin Get started for free

Build. Modernize. Scale.

Transform your business with Google Cloud

Get started for free Contact sales

PRODUCT N

Announcing Anthos: Cloud Services Platform GA
— The first comprehensive write once, run
anywhere hybrid- and multi-cloud platform

GOOGLE NEXT

Next 19 San Francisco is a wrap: Check out our playlist of
keynotes, interviews, and more

: PRODUCT NE PRODUCT NEY PRODUCT NEY
a Announcement: Bringing the best of Increasing trust in Google Cloud:) Helping businasses w
S ". open source to Google Cloud visibility, control, and automation Gns:ﬁ smarter,an” »- e cc
™ ;
customers G suite
Learn more Learn more Learn more

See what's possible with
Google Cloud

_images/Nextflow-Blast.png
lscript3 /query

Extract_Contigs

extracted_contigs_ch

Count_Nucleotides

lscript2_out_ch

_images/OsimisFlipHorizontally.png

_images/OsimisAngle.png

_images/OsimisEllipticalROI.png

_images/RegisteredGCPs.png
OISB{G(Dashboard Data Browsers ~ Resources~ Documentation About Help ~ o - =Menu

& Personal Details & Data Access (] & Google Cloud Platform

Name Apply for dbGaP Authorized Access to access underlying Level 1 genomics data Google Cloud Credits
Associate your account with your eRA Commons Account Apply for Cloud Credits and your own Google Cloud Project by submitting a

Email
% Associate with eRAAccount request.
LastLogin Mon Aug 17 2020 13:24:48 GMT-0400 (Eastern Daylight Time) 5 Leam tore [Request Credits]

Subscription N/A #* Edit Google Cloud Console
Access a user friendly, integrated Google Cloud Platiorm management console

Google Cloud Projects
Utilize your own Google Cloud Projects resources by registering them here.

_images/Register_Step_4.png
< ISB-CGC-01-0001-edit (isb-cgc-01-0001)

Service Accounts

Service Account Authorized Datasets Date Last Activated
58446635420-compute@developer.gserviceaccount.com All Open Datasets May 02, 2018, 5:54 p.m. c o
Register Service Account

Cloud Storage Buckets BigQuery Datasets

_images/RunningSnakemakeWithBam.png
1 samtools_stats_tool
sample: B
\

S N
(" samtools_stats_tool
sample: A

_images/RunningNextflowWithBam.png
Channel.fromPath.

yBamSample
utChannel
grep. tool
repChannel

utChannel

finalChannel

printlng

_images/RunningWDLWithBam_4.png
& ssh.cloud.google.com
[2020-07-02 O
5£5796608569

{

ctsfis s ali-afin: kv-testgit?authus &y 0

3:03,72] [info] WorkflowExecutionActor-ecb519d7-5571-4804-gbégr
b]: Workflow gcStats complete. Final Outputs:

"gcStats.grep_tool.grepout”: ["/home/thinh vo/WDL-GCgather/cromwell-execution
s/gcStats/ecb519d7-5571-4804-ab63-5£5796608569/call-grep_tool/shard-0/execution
/grep_out.txt"],

"gcStats.cut_tool.cuttoolout”: ["/home/thinh vo/WDL-GCgather/cromwell-executi
ons/gcStats/ecb519d7-5571-4804-ab63-5£5796608569/call-cut_tool/shard-0/executio
n/cut_out.txt"],

"gcStats.samtools_stats_tool.statsout”: ["/home/thinh vo/WDL-GCgather/cromwel
1-executions/gcStats/ecb519d7-5571-4804-ab63-5£5796608569/call-samtools_stats_t
00l/shard-0/execution/baml_gc_stats.txt™
}
[2020-07-02 00:03:03,79] [info] WorkflowManagerActor WorkflowActor-ecb519d7-557
1-4804-ab63-5£5796608569 is in a terminal state: WorkflowSucceededState
[2020-07-02 00:03:10,72] [info] SingleWorkflowRunnerActor workflow finished wit
h status 'Succeeded'.

{

_images/RunningWDLWithBam_3.png
|thinh voGkv-testgit:~/WDL-GCgathers ls
bamfiles.txt cromwell-51.ja- cromwell-executions
jthinh volky-testgit:~/WDL-GCgather$ cd cromwell-executions/

jthinh volkv-testgit:~/WDL-GCgather/cromwell-executions$ ls

lgeStats

J-hinh volkv-testgit:~/WDL-GCgather/cromwell-executions$ cd gcStats/
Jjthinh volkv-testgit:~/WDL-GCgather/cromwell-executions/gcStats$ ls

101c9941f-ee13-4266-8934-978£18176a71

[0 Filelban gostats. input

Jthinh volkv-testgit:~/WDL-GCgather/cromwell-executions/gcStats$ cd 01c9941f-eel3-4266-8934-978f18176a71/

-hinh volfkv-testgit:~/WDL-GCgather/cromwell-executions/gcStats/01c9941f-eel3-4266-

jthinh_volkv-testgi
jthinh volkv-testgi

v-testgi

ol crep ool Jf1i-santoots_state tool)

jthinh_vo

rc script script.background script.submit

8934-978£f18176a71$ 1s

stderr stderr.background

gcstats.wdl

womtool-51.jar

~/WDL-GCgather/cromwell-executions/gcStats/01c9941f-eel3-4266-8934-978£18176a71$ cd call-cat_tool/
/WDL-GCgather/cromwell-executions/gcStats/01c9941f-eel3-4266-8934-978£18176a71/call-cat tool$ 1s

/WDL-GCgather/cromwell-executions/gcStats/01c9941f-ee13-4266-8934-978£18176a71/call-cat_tool$ cd execution/
r/cromwell-executions/gcStats/01c9941f-eel13-4266-8934-978£18176a71/call-cat_tool/execution$ 1ls

stdout stdout.background

_images/RegisterServiceAccountsList.png
Paste 907668440978-0skt@5du3a0083cke14641u35deokgjj@developer. gserviceaccount.com in
the text box and hit Enter. Once the first Service Account displays in the box, add the second
one, fence-service@dcf-prod.iam.gserviceaccount.com, and click enter.

O AM&admin 1AM waop | -2 remove

= Permissions for project "Your Project”

© Identity & Organization These permissions affect this project and all of its resources. Learn more

[=] Quotas
ViewBy: MEMBERS ROLES
°3 service accounts

Add members to "Your Project”

Add members, roles to "Your Project" project

Enter one or more members below. Then select a role for these members to grant them
access to your resources. Multiple roles allowed. Learn more

New me s
907668440978 o (2]
oskt05du3ao083cke14641u35deokgjj@developer.gserviceaccount.com

fence-service@dcf-prod.iam.gserviceaccount.com @

Select a role v

<+ ADD ANOTHER ROLE

SAVE CANCEL

_images/RegisterAGCPForm.png
Please note that you must now add two monitoring Service Accounts to your GCP Project in the Google Cloud Console IAM page in order to register with ISB-CGC for controlled access data: the

ISB-CGC monitoring Service Account, and the new DCF monitoring Service Account. Our instructions below have been altered accordingly. Please update all of your GCP Projects in the Google
Cloud Console IAM page to include the new DCF monitoring Service Account, fence-service@dcf-prod.iam.gserviceaccount.com, as a Project Editor.

To register your Google Cloud Project with ISB-CGC, please take the following steps:
Grant the ISB-CGC and DCF Service Accounts access to your project

This will allow ISB-CGC and DCF to verify that all users of your Google Cloud Project have the same access rights to protected data as you do. Use the Instructions button to hide or show the steps
in this process. If you have already granted the ISB-CGC Service Account access to your project, you can proceed below to verification.

¥ Hide Instructions
Access your Google Cloud Project in the GCP Console (this link will open a new browser tab or window).

Select the hamburger menu in the top left corner. =| Google Cloud Platform

ﬁ Home Dashboard

Ijl Dashboard

= Activity

Scroll down to the 'Products' heading and select IAM & Admin.

Google Cloud Platform

B IAM & admin

_images/Register_Step_2.png
& Personal Details & Data Access (] & Google Cloud Platform

Name Deena Bleich © abGaP Access Authorized Google Cloud Credits
; Apply for Cloud Credits and your own Google Cloud Project by submitiing
Email deena bleich@gdit.com Congratulations, DEENABLETCHI request
Last Login Tue Aug 16 2020 15:34:55 GMT-0400 (Eastern Daylight Time) You now have access (o the following ISB-CGC controlled datasets: e
Subscription N/A # Edit Dataset o puea Google Cloud Console
@ TceA phs000178 @ View Access a user friendly, integrated Google Cloud Platform management console
@ TARGET phs000218 & View

Google Cloud Projects
You have 1 registered Google Cloud Project(s)

© Access Valid Until:
Tue Aug 16 2020 22:05:13 GMT-0400 (Eastern Daylight Time)

Controlled access period can be extended to 24 hours from now.

% Account is Linked
deena. bleich@gdit. cons linked to NIH identity DEENABLETCH

_images/Register_Step_1.png
ewssrcec Dashboard Data Browsers ~ Resources~ Documentation About Help ~ o - =Menu

Account Details &
Your Dashboard Sign Out ®

Saved Workbooks (1) v

Workbooks store the analyses you create, and their related data,

BRCA Workbook Jul 21,2020, 12:12 p.m.
+ Create A New Workbook
Saved Cohorts (2) v Gene & miRNA Favorites (1) a
| TCGA BRCA Cohort - Dead View Files Jul 21, 2020, 12:04 p.m.
i § Variable Favorites (1) a
| TCGA BRCA Cohort - Alive View Files Jul 21, 2020, 12:03 p.m.
+ Create A Cohort

Saved Programs (0) a

_images/Register_Step_3.png
Registered Google Cloud Projects

Project Name Project ID Registered Service Accounts # Storage Buckets # BigQuery Datasets

- [iss-coco1-0001 isb-cgc-01-0001 i 1 1

_images/My-Dashboard.png
Your Dashboard

Saved Workbooks (1)

Workbooks store the analyses you create, and their related data,

BRCA Workbook

Saved Cohorts (2)

| TCGA BRCA Cohort - Dead File browser

| TCGA BRCA Cohort - Alive File browser

Saved Programs (0)

Jul21, 2020, 12:04 p.m.
Jul 21,2020, 12:03 p.m.

+ Create A Cohort

Gene & miRNA Favorites (1)

BRCA Genes

Variable Favorites (1)

Program-Project-Disease

Jul 21,2020, 12:12 p.m.

+ Create A New Workbook

Jul 21,2020, 12:06 p.m.

+ Create Gene & miRNA Favorites

Jul 21,2020, 12:09 p.m.

+ Create Variable Favorites

_images/NIHLogin.png
Signin

Smart Card Login

Insert your PIV card into your smart card reader or
sign in using your mobile PIV-D credentials.

4’

—
| =
—
PIV-Exempt? Not a PIV Card Holder? Sign in using your account credentials:
Username Password Forgot Password?
Signin

Trouble signing in?

_images/Mouse_bucket_and_dataset.png
Review

les

Please select a Google Cloud Bucket to upload your files to.

isb-cgc-06-0007 - gene_expression
Please select a BigQuery dataset to upload your data to.

isb-cgc-06-0007 - Gene_Expression

Please refer to the system data dictionary @ for proper naming and data type conventions.

File GenExpressionMatrix_noNull.tsv
Platform

+ File structure is defined in the data dictionary.

_images/Analyses-Descriptions1.png
Analyses

L !
i .
] I|I Ill III IL
BIHTHOHUTHI] - — _— —
Bar Chart Histogram Scatter Plot Violin Plot
Used to plot a single categorical feature Used to plot a single numerical feature for Used to plot two numerical features for Used to plot a categorical feature on the
for one or more cohorts. one or more cohorts. one or more cohorts. Can also color code x-axis versus a numerical feature on the

points by a single categorical feature. y-axis. Points in the plot can be colored
by another categorical feature.

Start A New Workbook Bar Chart Start A New Workbook Histogram Start A New Workbook Scatter Plot Start A New Workbook Violin Plot

_images/Analyses-Descriptions2.png
0.137

577

MALE

-0.145

471

FEMALE

Wral nervous system Stomach Liver

Cubby Hole Plot

Used to plot two categorical features.
Boxes are colored by their related p-
values.

Start A New Workbook Cubby Hole Plot

A i

B tdt oM

50 10

SeqPeek

This visualization shows where somatic
mutations have been observed on a
linear representation of a specific protein.
Each horizontal strip represents the
protein, with data from different tumor
types (aka cohorts or studies) shown
stacked one on top of the other.

Start A New Workbook SeqPeek

OncoPrint

Used to plot multiple genomic alteration
(somatic mutation) events across a set of
samples by heatmap. OncoPrint is
developed and provided by cBioPortal.

Start A New Workbook OncoPrint

OncoGrid

Used to view multiple genomic alteration
(somatic mutation) events, clinical data,
available files across a set of cases by
interactive heatmap. OncoGrid library is
developed at Ontario Institute for Cancer
Research (OICR).

Start A New Workbook OncoGrid

_images/AdjustServiceAccount.png
Project Name Project ID Registered Service Accounts # Storage Buckets # BigQuery Datasets

v isb-cgc-06-0007 & isb-cgc-06-0007 v1 2 2

Service Account Authorized Datasets Date Last Activated

366178009820-compute@developer.gserviceaccount.com Al Open Datasets, TCGA Controlled Access Data, TARGET Controlled Access Data Nov 30,2017, 12:38 p.m. &

_images/AfterSignInPage.png
[in] = cloud.google.com

& GoogleCloud ~ Why Google ~ Solutions Products Pricing ~ Getting started Q. Docs Support Langua

Contact sales Ge. rted for free

Build. Modernize. Scale.

Transform your business with Google Cloud

t started for free Contact sales

PRODUCT NEWS
Announcing Anthos: Cloud Services Platform GA
— The first comprehensive write once, run
anywhere hybrid- and multi-cloud platform

GOOGLE NEXT

Next '19 San Francisco is a wrap: Check out our playlist of
keynotes, interviews, and more

PRODUCT NEWS PRODUCT NEWS PRODUCT NEWS
AL) Announcement: Bringing the best of Increasing trust in Google Cloud:) Helping busin~sses w
2 "_ open source to Google Cloud visibility, control, and automation Gnsl‘;:i smarter, an” » e co
™ A
customers G Suite
Learn more Learn more Learn more

See what's possible with
Cannle ClanAd

_images/BQ-CreateKidneyManifestTable.png
Source

Create table from: Select file:
Upload ~ || gde_manifest 20200326 txt

Destination

Project name Dataset name
Kids-rstarc ~ | | eoc_import

Table name.

'GDC._Kidney_File_manifest

Schema

Auto detect
+/ Schema and input parameters

© schema will be automatically generated.

Partition and cluster settings
Partioning:

No partitioning e

Clustering order (optiona):

Clustering order determines the sort order of the data. Clustering can only be used on
a parttioned table, and works with tables partitioned either by column or ingestion
ime.

Comma-separated lst of fields to define

stering order (up to 4)

Advanced options A
Writepreference:
Wit f empty S

Number of errors allowed: Unknown values:

° Ignore unknown values

Field delimiter:
Tab =

Header rows to skip: Quoted newiines.

‘Allow quoted newiines

EEy cancel

File format.
Browse | | CSV.
Table type

< | [Native table

Jagged rows
Allow jagged rows.

_images/BQ-Results-KidneyManifestURLTable.png
Query editor

1 seLecT

2

gdc.*, isb.file_gdc_url

3 FROM
*kids-First-drc.GDC_Import.GDC_Kidney_File manifest’ as gdc,
*isb-cgc.GDC_metadata.rel22_GOCFilelD_to_GCSurl’ as isb

[0 o - OETTE

Query results & SAVE RESULTS

Query complete (6.3 sec slapsed, 302.4 M8 processed)

Job information

Row

1

10

WHERE

gdc.id = isb.file gdc_id

Results JSON

id
372142f0-0241-407d-359¢-4€3123883982
5ee1d652-58a5-4061-9853-15e4455d959d
db88e366-2c81-4376-81c6-2c32391beef7
6e67abbb-a00a-4502-b554-b310e0a7cded
20435251-ddf8-4218-aba2- 77759638451
1bd36b75-60e6-4df5-a79b-fbsTT4ba15d9
b1086de4-116c-4d8f-02fd-dfa72f341af7
b294674e-6be0-4678-85eb-ce4ba7f27fb6
8¢21d228-001e-41ac-90e4-c1cc20fc25e1

1033f8c7-ad3f-4d60-845e-509bdecafaed

it Save view

® Schedulequery ~ || %% More +

fl EXPLOREDATA ~

Execution details

flename
nationwidechildrens. org_clinical TCGA-CJ-4641.xml
06108605-2a01-444b-83ac-{1397b184307. FPKM-UQ.txt g2
SITUS_p_TCGABS0_SNP_N_GenomeWideSNP_6_C11_680108 nocnv_grch38.seg.v2 txt
75ca17€3-40bc-4472-9739-9feBb3434e83 mirbase21 isoforms quantification tit
TCGA-BP-4335-11A-01-TS1 7f0cddec-b13f-4bes-b14e-800274cd025d svs
82672a31-315741d3-9cf6-e3a03fbfef3c_gdc_realn_rehead bam
TCOAWK-ASXT-01A-11R-A37H-13_mima_gdc._realn bam
‘TURBO_p_TCGA_244_246_247_N_GenomeWideSNP_6_A11_1271084.nocnv_grch3s seg.v2.txt
KIWIS_p_TCGASNP_225_226_N_GenomeWideSNP_6_D09_1151714.grch38.seg.v2.txt

1033f8c7-ad3f-4d6d-845e-5d9bdecafaed.vef.gz

+ COMPOSE NEW QUERY

mds size
85018df27babd1ecsafbse344f297c36 36358
363a37656b3e3b791199bb4e9748c981 518476
b254f8baa50e0a94f0cc2218d48111ed 125135
191a7e394b5ebanbéccibed149b09c0 344534
6aecfaelcaab4aseadse502b877984e3 305697539
5087522618c823b12256135502234745 8037206904
9936d0060c065074ed7844ba0c792423 111260127
101bdfoadd770d1b7975804df22559¢ 4303
949eaa23766e9b600275¢47fcIcca033 40448
277a665dfce0e61e754743b126732dde 313101
Rows per page: | 100 ~.

state
released
released
released
released
released
released
released
released
released

released

1-100 01 2332

[HIDEEDITOR [I FULL SCREEN

T query wil process 202.4 B when un. @)

file_gde_url
gs://gdc-tcga-phs000178-0pen/37214210-0a41-407d-
gs://gdc-tega-phs000178-0pen/SeedsSe-58a5-4cs-
gs://gdc-tega-phs000178-open/db8Be366-eca1-4aTe
gs://gdc-tcga-phs000178-0pen/6e67abbb-a90a-45d2
gs://gdc-tega-phs000178-0pen/2d435a51-ddf8-4218
gs://gdc-tega-phs000178-controlled/1bd36b75-60e6-
gs://gdc-tega-phs000178-controlled/b1086de4-116c-
gs://gdc-tcga-phs000178-0pen/b294674e-6be0-4678
gs://gdc-tega-phs000178-0pen/8c2fd228-001e-41ac-
gs://gdc-tega-phs000178-controlled/1033f8c7-ad3f<

3

51 Lastpage

_images/Analyses-Dropdown.png
ANALYSES v GENES & miRNA

Start New Workbook With ...
Bar Chart

Histogram
Scatter Plot
Violin Plot
Cubby Hole
SegPeek
OncoPrint

OncoGrid

Browse All Analyses

_images/AssociateWithERA.png
& DataAccess L]

Apply for dbGaP Authorized Access to access underlying Level 1 genomics data
Associate your account with your eRA Commons Account

% Associate with eRAAccount

& Leam More

_images/BQConsole-Barcodes.png
Google Cloud Platform

@ BigQuery @® FEATURES & INFO & SHORTCUT
Query history Query editor + COMPOSE NEW QUERY [® HIDE EDITOR T 1 FULL SCREEN
Saved queries 1 select distinct (case barcode)
2 from “isb-cgc.TCGA bioclin_v0.clinical v1®
Job history 3 where project_short_name like "TCGA-KIRS"
Transfers

Scheduled queries

Reservations & Ssave query saveview = (O Schedulequery ~ = %% More ~ This query will process 274.7 KB when run. °
Bl Engine

J Query results % SAVE RESULTS i EXPLORE DATA v
Resources + ADD DATA v

Query complete (0.4 sec elapsed, 274.7 KB processed)
Search for your tables and datasets

Jobinformation Results ~ JSON Execution details

Ed Annotations
Row case_barcode

Ed Biospecimen 1 TCGA-2K-A9WE

[Clinical 2 TCGA-2Z-A9JQ
B clinical_v1 3 TCGA-2Z-A9JE
» tcga_cohorts 4 TCGA-2Z-A9JS

TCGA_hg19_data_v0 5 TCGA-2Z-A9M

TCGA-2Z-A9JD
TCGA_hg38_data_v0

|5 [5 R e R |

tcga_seq_metadata Rows per page: = 100 v 1-100 of 828 First page 1< < > >| Last page

_images/BQConsole-TCGA.png
Platform

isb-cgc-outreach v

@ FEATURES & INFO

@ BigQuery

Query history
Saved queries 1
Job history

Transfers

Scheduled queries

& SHORTCUT

Query editor

Reservations m & Save query
Bl Engine ..
9 clinical_v1
Resources + ADD DATA v
Search for your tables and datasets Schema Details Preview
Row case_gdc_id
Ed Annotations Y

11301 7289bc25-2551-4c6d-b2fa-c7e13859b9b3

Ed Biospecimen

11302

B Clinical 11303

B clinical_vi 11304

3 tcga_cohorts 11305
4 TCGA_hg19_data_v0 11306

TCGA_hg38_data_v0

|5 [5 R e R |

tcga_seq_metadata

9dc5cc23-c903-4fe2-8354-64f8316f0d4
b26cb5f2-4ff0-4476-8d02-7256ace7d8a3
1d00217f-28df-4d91-aeb9-0d9a83a907e6
99d1bfcc-1989-4dd2-a5e9-78e08f6ce7cf
fa9089fa-9af9-4932-8ab7-0e7f2fd6b121

+ COMPOSE NEW QUERY [HIDE EDITOR FULL SCREEN

(@© Schedulequery ~ | %% More ~

@ QUERY TABLE IO COPY TABLE W DELETE TABLE & EXPORT v

case_barcode program_name disease_code project_short_name age_at_diagnosis age_began_smoking_|
TCGA-VD-A8KJ TCGA uvMm TCGA-UVM 53 null
TCGA-VD-AABM TCGA uvMm TCGA-UVM 64 null
TCGA-VD-A8KN TCGA uvMm TCGA-UVM 60 null
TCGA-VD-AABQ TCGA uvMm TCGA-UVM 71 null
TCGA-VD-AABO TCGA uvMm TCGA-UVM 77 null
TCGA-VD-A8K9 TCGA uvMm TCGA-UVM 71 null
Rows per page: = 100 ¥ 11301 - 11353 of 11353 First page 1< < > >| Last page

_images/BQTableSearch-Open.png
@ TCGABIOCLINICAL CLINICAL V1 TCGA CLINICAL GDC CLINICAL DATA CURRENT 11,353 6/22/2019 B
BIOSPECIMEN
DATA

Full ID isb-cgc. TCGA_bioclin_v0.clinical_v1 }COPY

DatasetID TCGA_bioclin_v0
Table ID clinical_v1

Description Data was extracted from the TCGA program in June 2019. This clinical information about patient cases also includes TCGA project information. More details: see
https://docs.gdc.cancer.gov/Encyclopedia/pages/Clinical_Data/

nav.xhtml

 Table of Contents

 		
 ISB-CGC

_images/BigQueryExample1.png
@ BigQuery @ FeATURes&INFO [sHoRTCUTS + COMPOSE NEW QUERY

Query history Query editor [HIDEEDITOR [I FULL SCREEN
Saved queries 1 sezecr
2 mutation.case_barcode,
Job history 3 mutation.Variant Type
4 FROM
Transfers s [4sb-cge.TCGA_hg19_data_v0.Somatic Mutation DCC] AS mitation
6 'WHERE
Scheduled queries 7 mutation.Hugo_Symbol = 'CDKNZA'
8 AND project_short_name = 'TCGA-BLCA'
Bl Engine 9 croup BY
10 mutation.case_barcode,
Resources + ADD DATA v 11 mutation.Variant_Type
12 ORDER BY
Search for your tables and datasets 13 mutation.case_barcode

Legacy SQL dialect

Query results & SAVERESULTS v

Saveview (O Schedulequery v %% More ~ This query will process 192.3 MB when run. @)

Query complete (0.1 sec elapsed, cached)

Jobinformation Results ~ JSON Execution details

Row mutation_case_barcode mutation_Variant_Type

1 TCGA-4Z-AA7R SNP
2 TCGA-DK-A6B6 SNP
3 TCGA-DK-AA6Q DEL
4 TCGA-DK-AA6S SNP
5 TCGA-E7-A677 SNP
6 TCGA-E7-A7XN DEL
7 TCGA-FD-A3N5 INS
8 TCGA-FD-ASBV INS
9 TCGA-FD-A6TI SNP
10 TCGA-G2-A2E0 SNP
1 TCGA-G2-A2ES SNP
12 TCGA-GC-A3BM DEL
13 TCGA-GD-A30S SNP
14 TCGA-GU-A42Q SNP
15 TCGA-GU-A766 SNP
16 TCGA-GV-A40E SNP

17 TCGA-K4-A54R SNP

_images/BigQueryExample2.png
@ BigQuery @ FeATURes&INFO [sHoRTCUTS + COMPOSE NEW QUERY

Query history Query editor [7) HIDE EDITOR T 7 FULL SCREEN
Savediquaries 14 [isb-cge.TCGA hgl9_data v0.Somatic Mutation DCC] AS mutation
15 WHERE
Job history 16 mutation.Hugo_Symbol = 'CDKN2A'
17 AND project_short name = 'TCGA-BLCA'
Transfers 18 GROUP BY
19 mutation.case_barcode,
Scheduled queries 20 mutation.Variant_Type
21 ORDER BY
Bl Engine 22 mutation.case_barcode,
23) AS case_list /* end case_list */
Resources + ADDDATA v 24 JOIN
25 [isb-cge.TCGA bioclin v0.Clinical] AS clinical
Search for your tables and datasets 26 oN
27 case_list.case barcode = clinical.case_barcode

Legacy SQL dialect
) isb-cge X m & Save query

Query results & SAVERESULTS v

i Saveview (© Schedulequery v | %F More ~ This query will process 192.7 MB when run. @)

Query complete (0.0 sec elapsed, cached)

Jobinformation Results ~ JSON Execution details

Row case barcode Variant_Type clinical gender ~clinical_vital_status ~clinical_days_to_death
1 TCGA4ZAATR SNP MALE Dead 522
2 TCGADKA6B6 SNP MALE Alive

3 TCGADKAA6Q DEL FEMALE Dead 413
4 TCGADKAA6S SNP MALE Alive

5 TCGA-ET-A677 SNP MALE Alive

6 TCGAE7-A7XN DEL MALE Alive nul

7 TCGAFD-A3NS INS MALE Dead 685
8 TCGAFD-ASBV INS FEMALE Dead 163
9 TCGAFD-A6TI SNP MALE Dead 294
10 TCGAG2A2EO0 SNP MALE Dead 1804
11 TCGAG2A2ES SNP MALE Dead 1004
12 TCGA-GC-A3BM DEL MALE Dead 651
13 TCGA-GD-A30S SNP FEMALE Alive

14 TCGAGU-A42Q SNP MALE Dead 344
15 TCGAGU-A766 SNP MALE Alive nul

16 TCGAGV-A40E SNP MALE Dead 261

17 TCGA-K4-A54R SNP MALE Alive

_images/BQTableSearch-TCGA.png
BigQuery Table Search

ISB-CGC BigQuery Documentation (£

Explore and learn more about available ISB-CGC BigQuery tables with this search feature.

Find tables of interest based on category, reference genome build, data type and free-form text search.

Status

CURRENT

o

Name

Program

| TCGA %

Category

[J CLINICAL BIOSPECIMEN DATA 6

[J FILE METADATA ©

) GENOMIC REFERENCE DATABASE 6
L) PROCESSED -OMICS DATA &

Reference Genome

ALL

o

Source

Choose Sources...

Data Type
| CLINICAL DATA x |

| GENE EXPRESSION x|
[PROTEIN EXPRESSION x |

Experimental Strategy

ISB-CGC BigQuery Access Info (&'

Show 10 % entries
Name A Program Category Source
@ TCGABIOCLINICAL CLINICAL V1 TCGA CLINICAL GDC
BIOSPECIMEN
DATA
Full ID isb-cgc. TCGA_bioclin_vO0.clinical_v1 E5COPY @OPEN
DatasetID TCGA_bioclin_v0
Table ID clinical_v1

Description

Schema

Google BigQuery Console @' About BigQuery (£ Release Notes (4

Columns~ & CSV Download Search:
Data Type Status Rows Created Preview Open
CLINICAL DATA CURRENT 11,353 6/22/2019] @

Data was extracted from the TCGA program in June 2019. This clinical information about patient cases also includes TCGA project information. More details: see
https://docs.gdc.cancer.gov/Encyclopedia/pages/Clinical_Data/

Field Name

case_gdc_id

case_barcode
program_name

disease_code

project_short_name
age_at_diagnosis
age_began_smoking_in_years
anatomic_neoplasm_subdivision

batch_number

ber
bmi

clinical_M

clinical N

clinical_stage

clinical_T

onloranial cancar

Type
STRING

STRING
STRING
STRING

STRING
INTEGER
STRING
STRING
INTEGER

STRING
FLOAT
STRING

STRING

STRING

STRING

QTRING

Mode
NULLABLE

NULLABLE
NULLABLE
NULLABLE

NULLABLE
NULLABLE
NULLABLE
NULLABLE
NULLABLE

NULLABLE
NULLABLE
NULLABLE

NULLABLE

NULLABLE

NULLABLE

NI ARI E

Description

GDC unique identifer for this case; e.g. 7b4ce492-ff40-4bf1-b3e8-75ff83e8746d. This identifier can be used to find more
information at the GDC Data Portal (https:/portal.gdc.cancer.gov/cases/7b4ce492-ff40-4bf1-b3e8-75ff83e8746d)

TCGA patient/case barcode; e.g. TCGA-06-0119
Program Name, always TCGA (The Cancer Genome Atlas) in this table.

Acode representing the type of cancer. Values can be found at https://gdc.cancer.goviresources-TCGA-users/TCGA-code-
tables/TCGA-study-abbreviations; e.g. OV, GBM, LUAD

Project name abbreviation; the program name appended with a project name abbreviation; e.g. TCGA-OV, efc.
Age, in years, at which a condition or disease was first diagnosed

Age, in years, that the participant began smoking

The spatial location, subdivisions and/or atomic site name of a tumor; e.g. Rectum, Larynx, Tonsil, etc.

The BCR Batch Code; see https://gdc.cancer.goviresources-TCGA-users/ TCGA-code-tables/bcr-batch-codes for
explanation of the codes

Biospecimen Core Resource; e.g. Nationwide Children's Hospital, Washington University
Body Mass Index of participant

The clinical M score s a rating of metastasis, that is, how much cancer has spread to distant sites. It is based on results of
tests done before surgery, such as physical exams and imaging scans; e.g. MX, M0, M1

The clinical N score is a rating of the extent of cancer within nearby lymph nodes, based on results of tests done before
surgery, such as physical exams and imaging scans; e.g. N1, N2, N3

The stage of the cancer, based on results of tests done before surgery, such as physical exams and imaging scans; e.g.
Stage I, Stage Il, Stage Ill, Stage IV

The clinical T score s a rating of the extent of the primary tumor, based on results of tests done before surgery, such as
physical exams and imaging scans; e.g. T1, T2, T3, T4

Indicatas whathar tha narkicinant has cnlaractal cancar an Yaa No

_images/BigQueryCosts.png
US (multiregion) ~ Monthly

Operation Pricing Details
Activestorage $0.020per Thefirst 10 GBI free each month. See Storage pricing for details.
6B
Long-term $0.010per Thefirst 10 GBI free each month. See Storage pricing for details.
storage 6B
BigQuery $1.10 per ‘The BigQuery Storage API is not included in the free tier.
Storage API]
Streaming $0.010per You are charged for rows that are successfuly inserted. Individual rows are calculated using a
Inserts 200 MB 1 KB minimum size. See Streaming pricing for details.
Queries (on- $5.00 per First 1 TB per month is free, see On-demand pricing for details.
demand)]
Queries $10000per You can purchase additional slots in 500 slot increments. For details, see Monthly flatate
(monthly flat- 500slots pricing.
rate)
Queries $8,500per You can purchase additional slots in 500 slot increments. You are billed monthly. For details,
(annual flat- 500slots see Annual flatate pricing

rate)

_images/BigQueryTableSearch-ColumnSelector.png
Name

Dataset ID

Table ID

Program
Category

Open

o

_images/BigQueryTableSearch-Documentation.png
ISB-CGC BigQuery Documentation 7 ISB-CGC BigQuery Access Info 7 Google BigQuery Console 2 About BigQuery 7 Release Notes (7'

_images/BigQueryExample3.png
© FEATURES & INFO

@ BigQuery

Query history
Saved queries
Job history
Transfers
Scheduled queries
Bl Engine

Resources + ADDDATA v

Search for your tables and datasets

) isb-oge b §

[SHORTCUTS

Query editor

1 SELECT

2 genex.case_barcode AS case_barcode,

3 genex.sample_barcode AS sample barcode,

4 genex.aliquot_barcode AS aliquot_barcode,

5 genex.HGNC_gene_symbol AS HGNC_gene_symbol,

6 case_list.Variant_Type AS Variant Type,

7 genex.gene_id AS gene_id,

8 genex.normalized count AS normalized count,

9 genex.project_short_name AS project_short_name,

10 clinical_info.clinical.gender AS gender,

11 clinical_info.clinical.vital status AS vital status,
12 clinical_info.clinical.days_to_death AS days to_death
13 FROM (/* This will get the clinical information for the cases*/
14 SELECT

Legacy SQL dialect

Query results

& save query saveview (O Schedulequery v+ %% More ~

& SAVERESULTS v

Query complete (3.4 sec elapsed, 20.7 GB processed)

Jobinformation Results ~ JSON Execution details

Row case_barcode

sample_barcode aliquot_barcode HGNC_gene_symbol

1 TCGA-4Z-AA7R TCGA-4Z-AA7R-0TA TCGA-4Z-AA7R-0TA-11R-A391-07 CCNE1

2 TCGA-4Z-AA7R TCGA-4Z-AA7R-0TA TCGA-4Z-AA7R-01A-11R-A391-07 CDKN1A

3 TCGA-4Z-AA7R TCGA-4Z-AA7R-0TA TCGA-4Z-AA7R-01A-11R-A391-07 MDM2

4 TCGA-4Z-AA7R TCGA-4Z-AA7R-0TA TCGA-4Z-AA7R-01A-11R-A391-07 TP53

5 TCGA-DK-A6B6 TCGA-DK-A6B6-01A TCGA-DK-A6B6-01A-11R-A30C-07 CCNE1

TCGA-DK-A6B6 TCGA-DK-A6B6-01A TCGA-DK-A6B6-01A-11R-A30C-07 CDKN1A

6
7 TCGA-DK-A6B6 TCGA-DK-A6B6-01A TCGA-DK-A6B6-01A-11R-A30C-07 MDM2
8

TCGA-DK-A6B6 TCGA-DK-A6B6-01A TCGA-DK-A6B6-01A-11R-A30C-07 TP53

9 TCGA-DK-AA6Q TCGA-DK-AA6Q-0TA TCGA-DK-AA6Q-01A-11R-A391-07 CCNE1

10 TCGA-DK-AA6Q TCGA-DK-AA6Q-0TA TCGA-DK-AA6Q-01A-11R-A391-07 CDKN1A

n TCGA-DK-AA6Q TCGA-DK-AA6Q-0TA TCGA-DK-AA6Q-01A-11R-A39I-07 MDM2

12 TCGA-DK-AA6Q TCGA-DK-AA6Q-0TA TCGA-DK-AA6Q-01A-11R-A391-07 TP53

13 TCGA-DK-AA6S TCGA-DK-AA6S-01A TCGA-DK-AA6S-01A-21R-A39-07 CCNE1

14 TCGA-DK-AA6S TCGA-DK-AA6S-0TA TCGA-DK-AA6S-01A-21R-A391-07 CDKN1A

15 TCGA-DK-AA6S TCGA-DK-AA6S-01A TCGA-DK-AA6S-01A-21R-A391-07 MDM2

16 TCGA-DK-AA6S TCGA-DK-AA6S-01A TCGA-DK-AA6S-01A-21R-A39-07 TP53

17 TCGA-E7-A677 TCGA-E7-A677-01A TCGA-E7-A677-01A-11R-A30C-07 CCNE1

Variant_Type

SNP
SNP
SNP
SNP
SNP
SNP
SNP
SNP
DEL
DEL
DEL
DEL
SNP
SNP
SNP
SNP
SNP

geneid

898
1026
4193
7157

898
1026
4193
7157

898
1026
4193
7157

898
1026
4193
7157

898

normalized_count

439.2523
963.0619
1117.935
710.7254
211.9698
3700.8614
1660.7267
284.4076
330.6927
3379.5579
1324.4213
1386.5981
289.8357
5246.8968
2193.6706
1450.4224
108.6912

project_short_name gender

TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA
TCGA-BLCA

MALE
MALE
MALE
MALE
MALE
MALE
MALE
MALE
FEMALE
FEMALE
FEMALE
FEMALE
MALE
MALE
MALE
MALE
MALE

vital_status
Dead
Dead
Dead
Dead
Alive
Alive
Alive
Alive
Dead
Dead
Dead
Dead
Alive
Alive
Alive
Alive

Alive

days_to_death

522
522
522
522

413
413
413
413

+ COMPOSE NEW QUERY

) HIDE EDITOR ¢ FULL SCREEN

This query will process 20.7 GB when run. 9

_images/BigQueryOpenButton.gif
BigQuery Table Search . 5 = : .

_images/BigQueryTableSearch-PreviewTableOption.png
TCGAHG1S METADATA RELEASE 14

TCGA SLIDE IMAGES METADATA

TCGA SLIDE IMAGES METADATA OLD

TCGA SLIDE IMAGES RELEASE 17

TCGABIOCLINICAL CLINICAL V1

TCGAHG3E MIRNASEQ EXPRESSION

© 0 © 0 © 0 ©

project_short_name case_barcode

ToeaDLEC TCGARQAAAT
ToeACHOL TCGAWS-AA3M
ToeaDLEC TCGAG8.6325
ToeaDLEC TCGAG8.6325
ToeaDLEC TCGAG8.6325
ToeaDLEC TCGA-GS-AU3

TeGA-CHOL TCGAWS-AA30
TeGA-DLEC TeGAFAATAT
‘

TCGA HG3E METADATA HG32 RELEASE 14

‘sample_barcode
TCGARQAAAT-01A
TCGAWS-AA3LTIA
TCGAG8.6325-01A
TCGAG8.6325-01A
TCGAG8.6325-01A
TCGA-GS-AUL01A
TCGAWS-AAZD-T1A
TCGAFAATL01A

© TCGAHG3S MIRNASEQ ISOFORM EXPRESSION

© TCGAHG3S COPY NUMBER SEGMENT MASKED RELEASE 12 TCGA

© TCGARADIOLOGY IMAGES

Program Category

ToGA FILE METADATA
ToeA FILE METADATA
ToGA FILE METADATA
ToeA FILE METADATA
ToGA ‘GLINIGAL BIOSPECIMEN DATA
ToeA FILE METADATA
ToGA PROCESSED -OMICS DATA
aliquot_barcode

TCGARQAAAT-01A-11R-A39-13
TCGAWS-AAM-TIA-1RA1D-13
TCGA-GB.6325-01A-11R-2212-13
TCGA-GB.6325-01A-11R-2212-13
TCGA-GB.6325-01A-11R-2212-13
TCGA-GS-ASULOIA-1IR-AIDL13
TCGAWS-AAJD-1IA-1RA1D-13
TCGAFAATQL-OIA-1IR-AIBN-13

mima_id read_count reads_per_million_miRNA_mapped

hsa-mir505 | 70
hsaminags | 33
hsamin19a 110
hsa-minss3 o
hsa-mi7702 854
hsa-mir3da 1118
hsamirea2 16
hsa-mir5010 25

Tcea PROCESSED -OMICS DATA
PROCESSED -OMICS DATA
Tcea FILE METADATA

‘Showing 1 to 10 of 76 entries (filtered from 327 total entries)

Source Data Type

epc

eoc

epc

eoc

epc

eoc

epc

epc

eoc

epc

FILE METADATA

FILE METADATA

FILE METADATA

FILE METADATA

CLINICAL DATA

FILE METADATA

MIRNA EXPRESSION

B3u1311
10276503
2362854
1833244
183 443396
277 344865
3253217
5738154

MIRNA ISOFORM EXPRESSION

Status

GURRENT
GURRENT
GURRENT
GURRENT
GURRENT
GURRENT

CURRENT

cross_mapped

CURRENT

COPY NUMBER SEGMENT MASKED CURRENT

FILE METADATA

CURRENT

Rows

435.289

30,267

30,267

30,267

11383

163.972

20845242

53,265,656

4951842

1469216

Createdv Preview Open

11202019

80612019

80612019

80612019

62112019

3712019

13172019

13172019

12312019

61012018

-2345

B B B @ @8 @

Q

L ® » O O S

Next

_images/BigQueryTableSearch-UI-homepage.png
BigQuery Table Search

Explore and leam more about available ISB-CGC BigQuery tables with this search feature.

Find tables of interest based on category, reference genome build, data type and free-form text search

Status

CURRENT

Name.

Program

Choose Programs.

Category
() CLINICAL BIOSPECIMEN DATA ©

) FILE METADATA ©

[GENOMIC REFERENCE DATABASE ©
[PROCESSED -OMICS DATA ©

Reference Genome

AL

Source

Choose Sources.

Data Type

Choose Data Types.

Experimental Strategy

Choose Experimental Strategy

Reset Al Filters

+ Show More Filters

Show | 10

© COLE 2010+ AFFYU133 MICROARRAY

© COLE2010- COPY NUMBER

SEGuENTS

© COLE2010- FASTAC METRICS

© COLE2010- FILE METADATA

© COLE 2010- SAMPLE INFORMATION

© COLE 2010+ SOMATIC MUTATION

© CcoLEsosPECIMEN VO

© coEcuncaLv

© COLEHG19 METADATARELEASE 14

© CLINVAR 20180401 GRCHST

~

1SB-CGC BigQuery Documentation ('

Program Category Source

coie PROCESSED. BROAD
owmics AT

coie PROCESSED. BROAD
owmics DaTA

coie PROCESSED. BROAD
owmics AT

coie PROCESSED. BROAD
owmics DaTA

coie PROCESSED. BROAD
owmics AT

coie PROCESSED. BROAD
owmics DaTA

coie cunicaL sRoA0
siospECIEN
oaTA

coie cunicac sRoA0
siospECIEN
oaTA

coie FLEMETAOATA BROAD
enowc cumvar
ReFeRENCE
oaTABASE

Showing 1o 10 of 214 entries (fitered from 327 total entries)

Have feedback or corrections? Please email us at feedback@isb-cgc.org.

1SB-CGC BigQuery Access Info 2

Data Type

GENE EXPRESSION

COPY NUMBER SEGMENT

FILE METADATA

FILE METADATA

BIOSPECIMEN SUPPLEMENT

SOMATIC MUTATIONS

BIOSPECIMEN SUPPLEMENT

CLINICAL DATA

FILE METADATA

SOMATIC MUTATIONS

Google BigQuery Console

© Columns~

Status

CURRENT

CuRRENT

CURRENT

CuRRENT

CURRENT

CuRRENT

CURRENT

CuRRENT

CURRENT

CuRRENT

About BigQuery &
4CSVDownload | Search:
Rows Created

17525476 2062016
70192 2072016
1209 382016
1915 3en016
@8 2men0t
16708 262016
054 2019
w0 eni201
1273 2019
34471 4608

.2345

Release Notes 7

Preview

Open

Next

_images/BigQueryTableSearchUI-descriptions.png
show| 10 v entries ©Coumms~ | £CSVOwricas | Searchi

Name Program category Source Data Type Status Rows Crestedw Preview Open
0 TeoARGNETON RELEASE 14 ean feucom coc e uETAOT” cumacn s nze = a
0 7earsuoE MAGzs VETONTA ean meucmom coc e uETAORT” cumac a0z wan ® a
0 TeeAsLOE MAGES METONTAGLD ean feucom coc e uETAOT” cumacn 02 wan @ a
0 Teansuot mracs RECASE 1 ean meucmom coc e uETAORT” cumac a0z wan ® a
0 TeensocuNCALcuNCAL Vi ean men e cumonL o cumacn s e = a

TCARGHNETONARGRAELEASE 14 TG meucmom coc e uETAORT” cumac g2 v ®

P —— ean mocesero. 0 [rep— cumacn 22 s @

FUID ioge TOSA ngis_dsa VO mRNAsea_Expession | ccey || @oren
DatasetlD TCOA s 5550
Te D miRAseq Eression
Descrpton Dea s Sxracied o fesse 14 e actve GDC e fom Dacanber 201 o iR sprssion i Hors s s o g cnce: v Dta sase Noes Dt Rssase Noies s -wissse 140

Schems FiidName. Tipe Mode Descripion
s on STRING NULLABLE Pt s s g v o i e s i, 5 TOGA O s
e STANG NULLABLE Ot TCGA a5 TCGA DK AN
— STRING NULLABLE TGO e v, TOGA 121089 1A Or vty v il s of O sgrons orsparin o e s o GROUP BY sy i
ey STANG NULLABLE TCOA ko b, o TOGA 12085 01A 0D 517

WULLABLE Usue A (i b o o 21— ek ks i i b s e, e e o e it VY s 0 o

NULLABLE Nt e e repped oo -

NULLABLE R ez il e s i i

NULLABLE A sort s s ey vl ot o i Sorcs, o e o o o s ot gy e s o3 1 o 0 1 s e 303 42 s s
i T We e e et e r e, ot et 1t WIAT bt gt B o v e P e

Labelz opeierta_sisegy maseq] sius -
© TOGANG MRNASEQ SOFORM EXPRESSION ToGA processeD aoc MRNA SOFORM EXPRESSION cumment. EES iz ® a
© TOGANGI COPY NUNGERSEGUENTMASKED ToGA processeD aoc 0PV NUMBER SEGENT HASKED cummenr. st sz a
© TeaAmmDOLoaYMAGES Toan FuEueToRm aoc FLE uETADATA cumment. 100210 orozos = a

St 1o 1075 e G fom 27t e Rl 3¢5 s e

_images/BigQuery_VCF_preview.png
Row reference name start_position ~end_position ~reference_bases alternate_bases.alt alternate_bases.AC alternate_bases AF names quality
L] 34466727 34466728 G A 2 0.000394477 1.4384e-06

c 4 0.000788955

_images/Breadcrumbs.png
°|sar(5c Dashboard Data Browsers ~

[Your Dasnboard > Conorts >

Create Cohort - Filters

_images/BigQueryTableSearchUI.png
o ISB-CGC DataBrowsers ~ Resources~ Documentation ~About Help + #Sign In
A RESOURCE OF THE NCI CANCER RESEARCH DATA COMMONS
ISB-CGC
Cancer Gateway in the Cloud
Access, Explore and Analyze Large-Scale Cancer Data Through the Google Cloud
Data Browsers
BigQuery Table Search Cancer Data File Browser Chromosomal

[zl Aberrations & Gene 9

Fusions DB g

Browse the Mitelman Database of

Explore a comprehensive selection of cancer
Chromosome Aberrations and Gene Fusions in

Browse BigQuery tables of metadata and
related data files in Google Cloud Storage

molecular cancer data from the Genomic Data
Commons and other sources. Jump directly to a Buckets, such as raw sequencing, cancer Cancer which relates cytogenetic changes, in

table to perform discovery and computation via nucleotide variation, pathology or radiology particular gene fusions, to tumor
sQL. images. characteristics.

o o
Launch

Launch Learn Launch

Resources

Controlled Access Data

Notebooks

A collection of notebooks written in R and

Pipelines and APIs :

Learn more about how to access and analyze

Cohort Builder / Data
Explorer 8‘%8

Aweb interface to build cohorts based on Sign in to access controlled-access data on the

clinical demographics and molecular filters.
Compare patient cohorts with various
exploration tools including 1GV viewer. image

cancer data through programmatic interfaces
including Google Cloud virtual machines and
APls.

Python, to serve as both tutorials or analysis
tools for a range of users; includes
reproductions of Resulome Explorer

Google Cloud. Authenticated users with proper
dbGaP authorization only.

_images/BigQuery_VCF_Flattened.png
CHROM POS.

chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl
chrl

chrl

6800385

1222012

7956297

603369

3338808

7524275

650728

2618590

1539776

2779082

3850044

3405102

4072505

5615714

9148928

4124633

8177977

D REF AT QUAL

> > > > > > > > > > > > > > >

>

INFO

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

SOMATIC

FORMAT

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GT:DPADISS

GTDPADSS

TumoR
/a5 1182
018958772
013205332
0/1:992:3982
05002122
/19268182
onmesi2

0/1611:5062
0/1:222:5962
013582362
o/s1:4202

051732
0/1:783892

012968622
o/1:6202452
o/s22122

0118501207

NORMAL
0/0:189:165:
0/0:938:227.
0/0:628:300
0/0:6736
0/0:364:366
0/0:185:173
0/0:242:167.
0/0:662:802.
0/0:513:992.
0/0:33473
0/0:958:870
0/0311:772.
0/0:143:315;
0/0.791:167.
0/0:906:620
0/0:691:396

/0111100

AD_Normal
165
227
300

6
366
73
167
s02
992

7
870
72
a1
167
620
306

100

Rows per page:

OP_Normal
189
s38
628
673
364
185
212
682
513
E
958
an
143
01
306
601

m

GT_Normal ~ S5_Normal

o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0
o0

o/

100 ~

1-1000f 11500

AD_Tumor

14

877

533

304

212

818

651

506

596

236

420

173

389

862

25

12

120

0P_Tumor
azs
895
20
992
600
926
7
o
22
ass
51
as
7
206
620
822

850

GT_Tumor

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

on

>

S5_Tumor

2
2

>| Last page

_images/Clinical-dataframe.png
case_barcode
<chr>
TCGA-2K-ASWE
TeGa-2z-A001
TeGa-2z-A002
TcGA-22-073
TeGa-22-A015

TCGA-22-A906

age_at_diagnosis _project_short name

<int>

52

7

7

67

Ed

60

<chr>

TCGAKIRD

TCGAKIR.

TCGAKIRD

TCGAKIR.

TCGAKIRD

TCGAKIR.

Stage |

Stage |
Stage I
Stage I

Stage |

_images/Clinical-histograms.png
Frequency

Frequency

0w 0

o

0w 0

o

TCGAKIRP

%

&

Age at diagnosis(years)

TCGAKIRC

o

100

%

&

Age at diagnosis(years)

o

100

_images/Category-filter.png
Category

CLINICAL BIOSPECIMEN DATA ©
FILE METADATA ©

GENOMIC REFERENCE DATABASE ©

PROCESSED .OMICS DATA &
Processed data primariy from the
BB GC (e g. raw data that has gone

)
HG19 2

FE DO

_images/CheckMark.png

_images/qotm_aug_fig5.png
training_run

©O ©O O 0o o o o o o

iteration

N W A OO N

loss
0.34
0.35
0.37
0.39
0.41
0.43
0.46
0.51

0.54

eval_loss
0.39
0.39
0.42
0.42
0.45
0.46
0.50
0.54

0.57

duration_ms
8599

9758

14785

6248

6239

2798

2765

3128

2551

learning_rate
0.40
0.80
0.40
0.80
0.40
0.80
0.80
0.40

0.20

_images/qotm_aug_fig4.png
Gene Weights

processed_input weight

__INTERCEPT__ 0.80
H2AFX 0.23
ESPL1 0.22
SMC4 0.21
MKI67 0.19
KIF11 0.17
CCNA2 0.14
PLK1 0.14
CCNF 0.14
CENPE 0.12

PLK4 0.11

_images/somatic-mutation-dataframes.png
Atibble: 6 x 9

Hugo_Symbol Chromosome ~Start_Position End_Position Reference Allele Tumor_Seq Allele2 ~Variant Classification _Type Tumor_Sample_Barcode

<chr> <chr> <int> <int> <chr> <chr> <chr> <chr> <chr>
RT1-160C184 avis TeTsaZe 7ETSIIe A G ANA SNP TCGA-A3-3380-01A
SUPT20HL2 xS0 24312504 i A ANA SNP TCGA-A3-ASOU-OTA
TugEps o 1Sl 138175460 c T ANA SNP TCGA-AK-3465-01A
MLzt vz seeeTos 233666793 i A ANA SNP TCGA-BO-4827-01A
2303242 7 1siass tesiasis G A ANA SNP TCGA-B0-4842.01A
BAGE2 a1 toaIT4 013728 c i ANA SN TCGAB0-5075-01A
At 6% 9

Hugo_Symbol Chromosome ~Start_Position Reference Allele Tumor_Seq Allele2 Variant Classification Variant_Type Tumor_Sample_Barcode

<chr> <chr> <int> <chr> <chr> <chr> <chr> <chr>
MIRSSAHG a1 16231065 16231065 A c ANA SN TCGA-SP-ASIL-OTA
TRIMSTHP et ssere0 5207920 A i ANA SNP TCGASP-AON-OTA
ceprropt s eI 1Es1TET GanaG - ANA DEL TCGA-SP-ASKOOIA
DRVISLIPI a7 s 32632560 i A ANA SNP TCGA-SPASKH.OTA

MiRST7C avie sans st A c ANA SNP TCGA-A-AED-OTA

Aocap 17 4268538 42868533 < T RNA SNe TCGA-BI-AB56-01A

_images/rstudio_login.png
Sign in to RStudio

Username:

Password:

[Stay signed in

_images/pep-abun-dataframe.png
196

gene_name

<chr>
a6L1
AcACA
Acace
ACvRLT
ADAR
Pl

687

TCGA-
KIRPTCGA-
UZ-A%PS

<dbl>

009664002

027065025

027961784

01417939

010918400

023840072

Teea-
KIRCTCGA-
5467
<dbl>
021942807
023535413
014651645
021096608
008s4ss71

024432873

Teea-
KIRCTCGA-
G886
<dbl>
0007042168
0240316365
0157676117
0274044723
019705759

0071690661

TCGA-
KIRCTCGA-
w-5583

<dbl>

003515470

030147438

030705621

005665730

003100023

076875054

TCGA-
KIRCTCGA-
AK-3436
<dbl>
02331283
01332021
03346727
0.1138674

00179514

01018915

Teea-
KIRCTCGA-
CW-6090
<dbl>
010048885
030670630
0332132
046641370
016353338

007049873

Teea-
KIRCTCGA-
80-5080
<dbl>
008025133
006110671
02746179
017300683
004067161

012648343

Teea-
KIRCTCGA-
BP-4338
<dbl>
003148955
075201898
076752207
or2770249
00e761717

084745613

Adata.frame: 6 x 687

TCGA-
KIRCTCGA-
BP-5184

<dbl>

012268847

041855657

046973348

005799289

038553785

074019487

TCGA-
KIRPTCGA-
1A-AS3W

<dbl>

002385270

046794541

041733040

008964699

004600027

050708815

_images/overview_image.png
Q@ 0

Pl / Biologist
web access

Computational
Research Scientist
Python, R, SQL

1SB-CGC Web App [

@

‘Algorithm Developer
shell & command
line, cloud console

Cloud
Storage

CancerData Nodee

W UserData

Google

BigQuery
mooc

W Controlled-Access Data

Google Compute
Engine

W _Open-Access Data

_images/plotmafSummary-kirp.png

_images/peptide-scatterplot.png
KIRC protein abundance

02

02

01

0

01

02

.
.
. '..:. .
oo oo
.%ﬂ*-
O .
..
.

KIRP protein abundance

_images/qotm_aug_fig2.png
tcga_model_1.TCGA_PAAD_TCGA_STAD_2018 08 28_16_41_55

Precision-Recall Curve

1.00-

0.75-

0.50-

precision

0.25-

0.00-

0.50
recall

_images/qotm_aug_fig1.png
Gene Set

HALLMARK_G2M_CHECKPOINT

Cohort 1

TCGA-PAAD

Cohort 2

TCGA-STAD

n_genes

50

1_reg

0.1

12_reg

max_iterations

20

early_stop
* TRUE
FALSE

Build Model

<>

<>

<>

<>

_images/qotm_aug_fig3.png
400
|

300
I

200
|

100
|

.l_-_
™ FP ™

FN

threshold false_positive_rate true_positives false_positives true_negatives false_negatives recall precision Fscore
0.36 0.13 440 23 160 10 0.98 0.95 0.96

_images/CohortFileBrowser.png
Your Dashboard > Saved Cohorts > BRCATCGA and BRCA-CCLE >

File Browser: BRCA-TCGA and BRCA-CCLE

Al Files 6V Pathology Images Pathology Reports Radiology Images

Listing Big
HG19 v

‘Showing 1 to 25 of 39774 entries

Show|25 v |entries Page D nDD EE
| Case Barcode o B Choose Columns fo Display ~

~ CASE

Program CaseBarcode File Name Disease Exp. Platorm Data DataType Data File Size
» DATATYPE ~ Code Strategy Category Format
) DATA CATEGORY CCLE EFM-192A G273SEEFM-192A1bam BRCA RNASeq llumina Raw Aigned BAM 20268
[GDC ID: 30307926-8aba- HiSeq reads
» EXPERIMENTAL STRATEGY
CCLE Hs281T G28814Hs 281.T3bam BRCA RNASeq llumina Raw Aigned BAM 14568
» DATA FORMAT [GDC ID: abe6d60f-2822-4. HiSeq reads
» PLATFORM
CCLE Hs281T C836.Hs_281.T 1 bam BRCA WXS lumina Raw Aigned BAM 10468
) DISEASE CODE [GDC ID: 310b609a-64c-. HiSeq ing reads
CCLE MDAMB-157 G28018MDAMB-157.1bam BRCA RNASeq llumina Raw Aigned BAM 12868
[GDC ID: 3688bd67-dd24- Hiseq reads
CCLE HCC1599 G27360HCCI599.1bam BRCA RNASeq llumina Raw Aigned BAM 17968
[GDC ID: dfeddeb8f15a-4 HiSeq sequencing reads
data
CCLE UACC812 G30624UACC-812.1bam BRCA RNASeq llumina Aigned BAM 12368
[GDC ID: 9db129e9-5602- Hiseq reads
CCLE MDAMB231 G28029MDAMB-231.1bam BRCA RNASeq llumina Raw Aigned BAM 10568
[GDC ID: 075ba7d3-6143-4. HiSeq sequencing reads

R T —————————

_images/CreateCohort.png
Your Dashboard > Cohorts >

Create Cohort - Filters

TCGA DATA

CASE DATA MOLEC.

» PROGRAM

» PROJECT SHORT NAME

» DISEASE CODE

» VITAL STATUS

» GENDER

» AGE AT DIAGNOSIS

» SAMPLE TYPE

» TUMOR TISSUE SITE

» HISTOLOGICAL TYPE

» PATHOLOGIC STAGE

PERSON NEOPLASM CANCER
STATUS

» NEOPLASM HISTOLOGIC GRADE

» BMI

» HPV STATUS

» RESIDUAL TUMOR

CCLE DATA

Selected Filters

Program Details

Total Number of Cases: 11,353

ical Features

Disease Code

Vital Status.

TARGET DATA

Total Number of Samples: 33,460

‘Sample Type

Tumor Tissue Site

Save As New Cohort

USER DATA

Gender

Clear All

Show More

_images/CohortCreation.png
Your Dashboard > Cohorts >

Create Cohort

1SB-CGC DATA

PROJECTS & STUDIES

USER PROJECT

) Mouse Cancer Project (90)

~ USER STUDY

]
a
a

Mouse Gene Expression (90)
miRNA Data (10)
RPPA data (63)

Selected Filters

User Study: Mouse Gene Expression X

Details

Total Number of Samples: 90

Projects & Studies

Project

Study

Total Number of Participants: 0

Save As New Cohort

Clear All

_images/CreateCohorts-Barcodes-Upload-Instructions2.png
GDC Data Portal Case Manifest Files
GDC Data Portal case manifests can be obtained on the ‘Cases' tab of the Exploration section of the data portal.

JSON case manifests must have a json extension, and will be validated against the GDC's JSON schema. The minimum required properties for each entry in the JSON file are the project object and
the submi tter_id fleld. The project object mustinclude the project_id property. Al other properties will be ignored

TSV case manifests must have a tsv extension, and must contain the Case ID and Project columns. Any other columns will be ignored. Do not remove the header row of the TSV case manifest.
Please note that currently, TSV case manifests will only contain the current page of the ‘Cases' Exploration tab.

Because the GDC Data Portal case manifest entries are cases, all samples from a case will be included in the cohort.

B Upload barcode list or case manifest

_images/CreateCohorts-noSignIn.png
°|sarc(,c Data Browsers ~ Resources- Documentation ~About Help ~ #Sign In

Create Cohort - Filters

TCGADATA CCLE DATA TARGET DATA
CASE DATA MOLEC. Selected Filters ClearAll

» PROGRAM

» PROJECT SHORT NAME Program Details

» DISEASE CODE ‘Total Number of Cases: 11,315 ‘Total Number of Samples: 23,797

» VITAL STATUS
Clinical Features

» GENDER
Disease Code Vital Status Sample Type Tumor Tissue Site Gender

‘Show More

» AGEAT DIAGNOSIS

» SAMPLE TYPE

» TUMOR TISSUE SITE

» HISTOLOGICAL TYPE

» PATHOLOGIC STAGE P .

» NEOPLASM HISTOLOGIC GRADE

» BMI

» HPV STATUS

» RESIDUAL TUMOR

» RACE

_images/CreateCohorts-Barcodes-Enter-Instructions.png
UPLOAD ENTER

Paste a set of barcodes and programs

There is a maximum length of 10000 character for the text box. Please use the file upload option if you need to upload more barcodes than wil fitin that space.
Al entries must be either a valid case barcode OF sample barcode. When a case barcode is provided, all samples from that case will be included in the cohort. Make a separate entry per sample if
only specific samples from a case should be added to the cohort

Barcode sets must be in tab-, comma-, of newline-separated format, and there should be no headers. Values may be placed in single or double quotes, and can be in a single or multiple lines.

Example Barcode Sets
TCGA-N9-A4Q4, TCGA-N7-A4YS-01A, *Saos-2" , "Hs 863.T"

“TCGA-N7-A4Y-01A"
*Hs 863.T", TARGET-SL-PAJMFS

LAMA-84
LeaF

LeLc-1e31
TARGET-10-CAAABC-60.3A
TARGET-10-CAAABD-60.2A
TARGET-10-CARABF -60.11C

“TARGET-51-PAILIV", Saos-2

Click the 'Verify' button to validate your entries. Any entries which are found to be invalid will be listed. You can choose to omit them and continue with cohort creation, or re-enter the set.

Barcode Entries
(Maximum length: 10000 characters)

_images/CreateCohorts-Barcodes-Upload-Instructions1.png
Your Dashboard > Cohorts >

Create Cohort - Barcodes

UPLOAD ENTER

Upload a GDC Data Portal Case Manifest or a CSV/TSV file of barcodes and programs

¥ Hide Instructions

Files must be in GDC Data Portal case manifest format, or in commaltab-delimited case/sample/program format. After selecting the file and uploading it, the entries will be validated. Any entries which
are found to be invalid will be listed, and you can choose to omit them and continue with cohort creation, or select a new file for verification and upload.

CSVITSV Barcode Files
Al entries must be either a valid case barcode OF sample barcode. When a case barcode is provided, all samples from that case will be included in the cohort. Make a separate entry per sample if
only specific samples from a case should be added to the cohort.

Barcode sets may be in tab-, comma-, or newline-separated format. Values may be placed in single or double quotes, and can be on a single fine or on multiple lines.

‘Tab- or comma-delimited files must have an extension of . txt, .csv, or . tsv. Please do not include any column headers.

Example Barcode File Contents
TCGA-N9-A4Q4, TCGA-NT-A4YS-01A, "Sa05-2" , "Hs 863.T"

“TCGA-N7-A4Y-01A"
*Hs 863.T", TARGET-SL-PAJMFS

LAMA-84
LeaF

LeLc-e3
TARGET-10-CAAABC-60.3A
TARGET-10-CAAABD-60.2A
TARGET-10-CARABF -60.11C

_images/Create_Variables.png
Your Dashboard > Saved Variable Favorites >

Create Variable Favorite

Name of Favorite (Required)

My new favorite variable

TCGA CCLE

COMMON CLINICAL SEARCH

) PROGRAM

() PROJECT SHORT NAME
() DISEASE CODE

) AGE AT DIAGNOSIS

J GENDER

TARGET

FAVORITES (1)

USER DATA

Selected Variables

Select your favorite variables from the left panel.

Save As Favorite Cancel

Clear All

_images/CreateDetails.png
Your Dashboard > Saved Cohorts >

BRCA-TCGA and BRCA-CCLE

| | B o

Current Filters
TCGA

CCLE

Disease Code: BRCA Disease Code: BRCA

Cohort Details

Internal ISB-CGC Cohort ID: 1975
Total Number of Cases: 1159
Total Number of Samples: 3430
Your Permissions: OWNER

‘Show More
TCGA DATA ‘CCLE DATA u
Program Details
‘Total Number of Cases: 1,098 ‘Total Number of Samples: 3,366

Clinical Features

Disease Code Vital Status Sample Type Tumor Tissue Site Gender Age at Diagnosis

_images/CreateWorkbook.png
Untitled Workbook

Version: Version 2

: HG38

‘ ‘Shared With (0)

Worksheet1 +

< Analysis » Learn more about our available Analyses Plot Settings x
Source Data ysis Type & <
Genes & miRNAS fistooram X Axis Variable
Variables + ~ select a variable v
Cohorts + < c & Pl [Plot as logg(n+1)
Please select the Lul Edit Plot Settings option above to change the settings to produce a plot FlotBy
Cases v
© To complete this analysi
© Select an Analysis Type (above) Cohorts
© Select Genes & MIRNAS and/or Variables
© Select a Cohort [—

‘Submit Plot

_images/oct_fig1.png
| s B - CG(:6 MSigDB C7 Gene Set Correlation Heatmaply
Cancer Genomics Cloud

gene-gene spearman correlations

Gene Set 1
(GSE40685_NAIVE_CD4_TCELL_VS_TREG_UP - _7_

Gene Set2 - -"ﬂ""“ fiain ,.-w,"‘ "-‘T,-TV"
‘GSE40685_NAIVE_CD4_TCELL_VS_TREG_DN - 4 e

Cohort
TCGA-BRCA -

Cluster Golumns
Cluster Rows
Gene Ordering Method

aw -

Helust Method

complete -

‘Submit

Gene sets are derived from Molecular Signatures Database (MSIgDB), G7 collection. Subramanian, Tamayo, et al. (2005, PNAS 102, 15545-15550) http://software.broadinstitute.org/gsea/msigdb

Made in Shiny using googleAUthR to create bigQueryR

_images/oncoplot-kirp.png
]

|
e
| e

vy

_images/omicsData.png
DNASeq

(MAF, VCF) Clinical & Biospecimen
DNA
methylation
- miRNAseq
Protein (RPPA)
SNP array

RNASeq
(gene, isoform,
exon, junction, efc)

(genotype calls,
allele- and segment-
copy-number values)

_images/march_pred_tcga_1.png
Results Details s Show Pivot Download as CSV

Row gene_i gene_j Pa Na Pb Nb PDiff
1 NKX86-3 SLC12A3
ALDH3B2 RIPPLY1

79 114 117 0.8604349237260629
79 104 117 0.7876230661040787
ALDH3B2 RP11-557H15.3
ALDH3B2 PRSS57

79 102 117 0.7831872768581629
79 96 117 0.7825381369685167

a H» W N
© W N o ©

NKX86-3 PRSS57 79 103 117 0.766417829708969

Table JSON First <Prev Rows 1-50f 1225 Next> Last

_images/may_1.png
Row project_short_name N_genes

1

N o g~ W N

TCGA-UCEC
TCGA-SKCM
TCGA-COAD
TCGA-STAD
TCGA-LUSC
TCGA-LUAD
TCGA-HNSC

805
466
261
246
219
204
179

_images/matlab_plot_ms_fs.png
In (19]: import matplotlib.pyplot as plt

plt.figure();
df2 = pandas.DataFrame(data_frame, columns=['M_count','F_count'])

df2.plot.bar();

<Figure size 432x288 with 0 Axes>

- _count

1000 - F count
00
a0
a0

20

ST ORI S SEEARANN INERRAR RN

_images/may_3.png
Row

o o A~ W N

casel
TCGA-06-5416
TCGA-DU-6392
TCGA-06-5416
TCGA-06-5416
TCGA-19-5956
TCGA-19-5956

study1
TCGA-GBM
TCGA-LGG
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM

geneCount1
30
21
30
30
16
16

case2
TCGA-IB-7651
TCGA-IB-7651
TCGA-19-5956
TCGA-DU-6392
TCGA-DU-6392
TCGA-IB-7651

study2
TCGA-PAAD
TCGA-PAAD
TCGA-GBM
TCGA-LGG
TCGA-LGG
TCGA-PAAD

geneCount2 gene_intersection gene_union

34
34
16
21
21
34

20
13
10
1"
7
8

44
42
36
40
30
42

jaccard_index
0.45454545454545453
0.30952380952380953
0.2777777777777778
0.275
0.23333333333333334
0.19047619047619047

_images/may_2_2.png
Row Hugo_Symbol gene_count

1 Fexw EY
2 NoToHL 15
3 NoToHs 1
4 o1 9
B 9
5 NoToH2 s

_images/may_brca_jaccard_table.png
Row table cell n
1 BRCABRCA 2206
2 cemERcA 112
3 cemoEM 1o

_images/may_5.png
Row

o o A~ W N

pathway
Histone Modifications
Alpha 6 Beta 4 signaling pathway
Histone Modifications
Histone Modifications
Interferon type | signaling pathways

Kit receptor signaling pathway

casel
TCGA-19-5956
TCGA-06-5416
TCGA-06-5416
TCGA-06-5416
TCGA-06-5416
TCGA-19-5956

study1
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM
TCGA-GBM

geneCount1
17
17
15
15
22
15

case2
TCGA-DU-6392
TCGA-DU-6392
TCGA-19-5956
TCGA-DU-6392
TCGA-IB-7651
TCGA-DU-6392

study2
TCGA-LGG
TCGA-LGG
TCGA-GBM
TCGA-LGG
TCGA-PAAD
TCGA-LGG

geneCount2 gene_intersection gene_union

20
15
17
20
20
20

13
1"
1"
12
14
1"

24
21
21
23
28
24

jaccard_index
0.5416666666666666
0.5238095238095238
0.5238095238095238
0.5217391304347826
0.5
0.4583333333333333

_images/may_brca_pathways_jaccard_2.png
588488 §

@
a2

casel
TCGABE-ANIC
TCGA-AO-AVE
TCGA-A2-AOTT
TCGAAC-A3YI
TCGA-A2-A0SV
TCGA-A2-AOYI
TCGA-A2-A0SV
TCGA-AC-A3Y]

study1
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

pathCount1.

a
a
a
a
B

casez
TCGAES-AIRS
TCGABH-AOBF
TCGAAC-A3YI
TCGALLASOY
TCGABH-AGBY
TCGABH-AOWS
TCGABH-AGBM
TCGA-ES-ALRE

study2
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

BB RB RS

jaccard_index
0.96969696969696972
0.96923076923076923
096875
096875
096875
096875
096875

E
3
2
2
2
2
2
2

0.96875

_images/may_brca_pathway_jaccard.png
o vouaun]

casel
TCGA-AR-ALAX
TCGAAR-AOTR
TCGA-A2-A0SV
TCGA-A2-AOYI

TCGA-A2-A0SV
TCGA-A2-AOYI

TCGA-AN-AOFF
TCGAAC-AIYI

study1
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

pathCount1.

a
a
a
a
a
a

case2
TCGAEW-ALPL
ToGAEZALSS
TCGAAC-A3YI
TCGADB-AIZS
TCGA-A2-AOYI
TCGAEZALLS
TCGADB-AIZS
TCGAE2ALLG

study2
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
ToGABRCA
TCGABRCA

_images/may_cosmic_1.png
tegasample
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A
TCGA-06-5416-01A

geneCountl

888888

cosmicSample
YuKLAB
YUKAT
esceps
YuLan
WSU-HNE
sysuce-880T

Primary
skin
skin
skin
skin
upper_aerodigestive_tract

large_intestine

Primary_histology
‘malignant_melanoma
‘malignant_melanoma
carcinoma
‘malignant_melanoma
carcinoma

carcinoma

geneCount2
9

1n

s

9

12

5

intersection gene_union

NI

2
a
2
a
Ed
a

Jaccard_index
021875
0.20588235294117646
01875
0.14705882352081177
0.13513513513513514
0.12003225806451613

_images/june_fig4.png
Buckets / daves-cromwell-bucket / cromwell-execution / gcStats / 1ba9e249-2f57-4fb9-b5df-899e91e437ac / call-cat_tool

Name Size Type Storage class Last modified

£ cat_toolrc.txt 2B text/plain Regional 6/28/18, 5:39 PM
£ cat_tool-stderr.log 0B text/plain Regional 6/28/18, 5:39 PM
£ cat_tool-stdout.log 0B text/plain Regional 6/28/18, 5:39 PM
= cat_tool.log 7.28 KB text/plain Regional 6/28/18, 5:39 PM
£ execsh 1.26 KB text/plain Regional 6/28/18, 5:37 PM
= final_gc_stats_out.txt 126 B text/plain Regional 6/28/18, 5:39 PM

_images/june_fig3.png
Buckets / daves-cromwell-bucket / cromwell-execution / gcStats / 1ba9e249-2f57-4fb9-b5df-899e91e437ac

Name

9 call-cat_tool/
9 call-cut_tool/
[0 call-grep_tool/

[0 call-samtools_stats_tool/

Size

Type

Folder

Folder

Folder

Folder

Storage class

Last modified

_images/kras_feat_weights.png
category weight

KRAS WT -0.5796828516555209
KRAS Silent -0.14751711019807756
KRAS Mut -0.03267322767394467
KRAS SNP -0.012844676082355292
KRAS DEL 0.0
KRAS Nonsense_Mutation 0.0
KRAS INS 0.0
KRAS 3'UTR 0.0

KRAS Missense_Mutation 0.0

_images/kmeans_plot.png
ESR1

® o ° as.factor(Cluster)
° o ® 0

.-.:' ° ° 1

10 15

_images/making_key_1.png
¢ @ =

Home

Pins appear here @

Marketplace

Billing

Support
IAM & admin

Getting started

Dashboard

Library

Credentials

_images/make_dataset.png
Google BigQuery vitn igauery Mate

composE auery < sat New Query 7
Query History 1+ seLzcr
Job History 3 Jrmon
4| ML.VEIGHTS(MODEL “tcga mode
Filter by ID or label ? °
1SB-CGC-02.0001 (s15) =l

type filter here... (regexp is ok) Create new dataset

» Daves_working_area (35) ‘Switch to project -

» Mtutorial (1)

Customer-Managed Encryption
» NC_spedial_tables (13)
» SYNTHETIC_LETHALITY (7) Refresh

» tcga model 1 (15) ¥

_images/making_key_3.png
& Create service account key

Service account

New service account \
Service account name Role
R server key Select arole

Service account ID

r-server-key @isb-cgc-02-0001.iam.gserviceaccount.com C

Key type
Downloads a file that contains the private key. Store the file securely because this key can't
be recovered if lost.

® JSON
Recommended

P12
For backward compatibility with code using the P12 format

_images/making_key_2.png
API APIs & Services

Dashboard
Library

Credentials

Credentials

Credentials OAuth consent screen Domain verification

Create credentials ~ Delete

API key
Identifies your project using a simple API key to check quota and access

OAuth client ID
Requests user consent so your app can access the user's data

Service account key
Enables server-to-server, app-level authentication using robot accounts

Help me choose
Asks a few questions to help you decide which type of credential to use

ition |

2488
13ubk

_images/march18_sim_result_1.png
Results

Row

1

a H» W N

Table

ai
X5
X4
X1
X5
X6
X2

Details

aj
X6
X5
X6
X7
X7
X5

JSON

bi
X5
X4
X1
X5
X6
X2

bj
X6
X5
X6
X7
X7
X5

Pa Na

10

© © o o

10
10
10
10
10
10

Pb Nb

10

10
10

10
10
10
10
10
10

PDiff
1.0
1.0
1.0
1.0
0.9
0.9

Show Pivot Download as CSV

First <Prev Rows 1-60f45 Next> Last

_images/march18_pred_1.png
Results Details

Row ID Phenotype Prediction
1 DRRTF 0 0

Table JSON

